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Abstract

The Average Path Length (APL) in a graph is a useful metric for assessing the
connectivity of the graph. This report presents two efficient algorithms for min-
imising the APL in a weighted, directed graph G = (V,E) by adding a single edge
from the set of edges S. Time complexity analysis of these two algorithms gives
theoretical run time complexities of O(|V |2|S|) and O(|V |3 log|V |+|V ||S| log|V |),
both of which are a significant improvement over the previous best known al-
gorithm. Empirical analysis of the performance and correctness of these new
algorithms validated the theoretical predictions. These algorithms have poten-
tial applications in a number of real-world systems, including microprocessor and
network-on-chip design.
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CHAPTER 1

Introduction

Many real-world systems, such as communication networks, can be modelled as a
graph composed of a set of vertices and a set of edges. Using a computer network
as an example, the set of vertices represents the devices in the network, and the
edges represent the network connections between them.

The Average Path Length (APL) in a graph is useful as a metric for the
connectivity and performance of any real-world systems that can be modelled as
graphs, and minimising the APL is valuable as a method for optimising these
real-world systems. Again using a computer network as an example, a network
with low APL would also have low average transmission latency between com-
puters. Minimising the APL can be valuable in optimising the performance of
networks such as the inter-core communication networks found in modern multi-
core microprocessors [1], [2] (see Section 3.2). Small-world networks are a type of
graph characterised in part by their low APL [3]. The properties and synthesis
of small-world networks have been the subject of some previous research [4], [5]
(see Section 3.4). Efficient methods for minimising the APL of a graph can be
used to synthesise small-world networks.

Previous work that has been done in this field, as well as on the relationship
between graphs with low APL and small-world graphs, is covered in Chapter 3.
Investigation of strategies for minimising the APL in a graph through single edge
addition produced two efficient algorithms for finding an optimal solution to this
problem. The algorithms were tested empirically to assess their correctness and
efficiency.
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CHAPTER 2

Problem Description

2.1 Average Path Length

Consider a directed graph G = (V,E) in which edge weights are given by the
function w : E → R. A path p in G from s ∈ V to t ∈ V is a sequence of
vertices p = 〈v0, v1, v2, . . . , vk〉 such that v0 = s, vk = t, and (vi−1, vi) ∈ E for i =
1, 2, . . . , k [6, p. 1170]. The path p is said to contain the vertices v0, v1, v2, . . . , vk
and the edges (v0, v1), (v1, v2), (v2, v3), . . . , (vk−1, vk). This can be expressed as
vi ∈ p for i = 0, 1, 2, . . . , k and (vi−1, vi) ∈ p for i = 1, 2, . . . , k. The length of a
path is the sum of the weights of all edges it contains. If a path exists between a
given pair of vertices, there must therefore exist one or more such paths that have
minimum length. Let ds,t be the length of the shortest (i.e., minimum length)
path in G that begins at s and ends at t. Self-paths are considered to have zero
length (i.e., ds,s = 0) as they contain no edges, and pairs of vertices for which no
path exists have a constant disconnection cost D (that is, ds,t = D). In computer
science the shortest path is considered undefined for graphs containing cycles
(that is, paths that start and end at the same vertex) with negative total weight
[6, p. 645]. Without loss of generality there exists a shortest path that is a simple
path (that is, a path containing no cycles, and therefore no repeated vertices or
edges) [6, p. 646]. The weighted Sum of Path Lengths (SPL) in G is defined as:

SPL =
∑
i,j∈V

ci,jdi,j (2.1)

where ci,j is a constant non-negative weighting factor defined for every pair of
vertices i, j ∈ V . A typical definition of ci,j would be ci,i = 0 and ci,j = 1 for all
i 6= j. The APL in G is defined as:

APL =
∑
i,j∈V

ci,jdi,j

/ ∑
i,j∈V

ci,j = SPL/SWF (2.2)

where SWF =
∑

i,j∈V ci,j is the sum of all weighting factors. Note that the SWF
is constant, and hence the SPL is a constant-factor multiple of the APL. Both
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the SPL and the APL are undefined on graphs containing negative-weight cycles
due to their definition in relation to the shortest path problem.

2.2 MinAPL

For a graph G = (V,E) with weighting factors ci,j, and a set of candidate edges
S, the single edge addition APL minimisation problem (henceforth MinAPL or
alternatively 1-MinAPL) is to select a single edge e ∈ S such that the APL of
G′ = (V,E ∪ {e}) is minimised. It is valid to make no selection if no edge in S
reduces the APL. Any edge that introduces a negative-weight cycle is considered
invalid, as its introduction would cause the APL to become undefined. Improving
on the known polynomial-time solutions to this problem is the main focus of this
report.

2.3 k-MinAPL

For a graph G = (V,E) with weighting factors ci,j, a set of candidate edges S, and
an integer k, the multiple edge addition APL minimisation problem (henceforth
k-MinAPL) is to select a set of edges F ⊆ S, |F | ≤ k such that the APL of
G′ = (V,E∪F ) is minimised. Any set of edges that introduces a negative-weight
cycle is considered invalid, as its introduction would cause the APL to become
undefined. This problem has been shown to be NP-hard by reduction from the
set cover problem [7], and hence is not equivalent to repeated application of
1-MinAPL.

2.4 Example

Consider the example graph shown in Fig. 2.1 with candidate edge set S =
{e1, e2, e3, e4} and ci,j = 1 for all i 6= j and ci,i = 0 otherwise. Initially, the graph
is disconnected and has a total APL of (8D+ 81)/16. Let D have some large yet
finite value. For k = 1 the optimal solution is to take either e2 or e3, as both give
a new APL of (4D + 89)/16, and both other options give (4D + 102)/16. For
k = 2 the optimal solution is to take both e2 and e3, as this gives a new APL of
40/16, which is better than the result of taking any other subset of edges.
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CHAPTER 3

Literature Review

This section reviews work done in the field of APL minimisation and related
problems. Section 3.1 reviews methods for computing shortest paths, Section 3.2
discusses the relationship between APL and network topology, specifically with
regard to small-world networks, Section 3.3 considers what work has already been
done in finding computational methods for minimising the APL of a graph, and
Section 3.4 reviews applications of such methods.

3.1 Shortest Path Problems

Given the definition of APL in Section 2.1, it is readily apparent that computing
di,j, the length of the shortest path from node i to node j, is fundamental to
computing the APL. This section reviews previous work done on the problem
of computing shortest paths in G as defined in Section 2.1, including the Single
Source Shortest Paths (SSSP) and the All-Pairs Shortest Paths (APSP). The
SSSP problem involves computing the shortest path from a single given source
vertex s ∈ V to each destination vertex t ∈ V . The APSP problem is to compute
the shortest path from s to t for all pairs s, t ∈ V . Efficient algorithms for solving
APSP are of particular relevance to computing the APL, as the APL is defined
in terms of the shortest path lengths for all pairs of start and end vertices.

In 1959, Dijkstra [8] proposed an algorithm for computing the shortest path
tree of a graph rooted at a given vertex s. The proposed algorithm is stated
to only work for graphs with non-negative edge weights. A shortest path tree
can be thought of as the union of the shortest paths from s to t for all t ∈ V .
The construction of such a tree is equivalent to computing the SSSP of a graph.
The algorithm works by starting with the singleton tree containing just s, and
repeatedly adding vertices from V until the tree contains the entirety of V . With
each addition, the vertex with minimum shortest path length from s and not
already in the shortest path tree is the one chosen. It can be shown that this
shortest path must be one edge longer than a shortest path already in the tree,
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as any vertex closer to s must already be in the tree. Selecting the next vertex
to add can therefore be accomplished by maintaining a record of the length of
the shortest known path to each vertex, and updating this for all neighbours of
the new vertex whenever a new vertex is added to the tree. The parent vertex
is whichever intermediate vertex in the tree is responsible for the shortest known
path to the new vertex, and whenever a new vertex is added to the tree the edge
between the new vertex and its parent must also be added. In its original form,
this algorithm performed a linear-time scan through all shortest known paths
and selected the minimum, giving this algorithm time complexity O(|V |2). The
algorithm can be improved using a minimum-priority queue and was improved
upon in 1987 by Fredman and Tarjan [9], who used a Fibonacci-heap to implement
a more efficient minimum-priority queue and achieved an overall time complexity
of O(|E|+ |V | log|V |).

In 1962, Floyd [10] proposed an algorithm for computing the lengths of the
APSP of a graph. Floyd’s work is very similar to an independent work published
by Warshall [11] in the same year, and hence the algorithm is commonly referred
to as the Floyd-Warshall algorithm. The proposed algorithm is stated to work
for directed graphs with real-valued edge weights, but not for graphs containing
negative-weight cycles. The algorithm works by maintaining an array di,j. Ini-
tially d is just the edge weights of the graph, wi,j (which are infinite if no edge
exists). This can be thought of as the lengths of all shortest paths from i to
j containing no intermediate vertices. The algorithm then iteratively grows the
shortest paths by adding each k ∈ V in turn to the set of allowable intermediate
vertices and updating di,j accordingly. For all pairs i, j ∈ V , if di,k + dk,j < di,j,
then di,j is overwritten with the shorter length. As such di,j always contains
the length of the shortest path possible using only the current set of allowable
intermediate vertices. When all vertices have been added, the set of allowable
intermediate vertices is the entirety of the set V , and hence the values of di,j
are the lengths of the shortest paths in G for all i, j ∈ V . Time complexity
analysis of the algorithm produces a theoretical time complexity of O(|V |3). For
dense graphs (i.e.: where |E| ∈ Θ(|V |2)), this is the asymptotically fastest APSP
algorithm in current literature.

More efficient APSP algorithms are known to exist for sparse graphs (where
|E| ∈ O(|V |)). Repeated application of Dijkstra’s SSSP algorithm for all source
vertices can be used to compute the APSP in O(|V ||E|+ |V |2 log|V |), or equiva-
lently O(|V |2 + |V |2 log|V |) ∼ O(|V |2 log|V |) due to the asymptotic limit on |E|.
This is a clear improvement on the time complexity of the Floyd-Warshall algo-
rithm, but its applications are constrained by the requirement for non-negative
edge weights. However, in 1977 Johnson [12] published a method (based on
the Bellman-Ford algorithm) for converting general graphs to graphs with non-
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negative edge weights in O(|V ||E|) while retaining all shortest path informa-
tion. Johnson combined this method with repeated application of Dijkstra’s al-
gorithm to produce an APSP algorithm with overall time complexity O(|V ||E|+
|V |2 log|V |). In a more recent work from 2004, Pettie [13] succeeded in gen-
eralising the work of Thorup [14] and Hagerup [15] to produce an APSP algo-
rithm for general graphs with overall time complexity O(|V ||E|+ |V |2 log log|V |).
Both Johnson’s and Pettie’s algorithms are asymptotically as fast as the Floyd-
Warshall algorithm on dense graphs, but on sparse graphs their overall time
complexities become O(|V |2 log|V |) and O(|V |2 log log|V |) respectively, both of
which are a significant improvement over the Floyd-Warshall algorithm.

3.2 Small Worlds

The small-world phenomenon was observed and defined by Milgram in 1967 [3].
Many real-world networks have regular structure, meaning that all nodes in the
network have an approximately equal number of incident links. The APL in a
graph with regular structure is typically quite long. A small-world network is de-
fined as having an APL that grows logarithmically with respect to the size of the
network. This has lead to some research being done in converting arbitrary net-
works into small-world networks, which closely relates to the APL minimisation
problem considered in this report.

In their 1998 work, Watts and Strogatz [4] investigated the properties of many
real-world examples of small-world networks, such as the graph of actors who have
been credited in the same films, and presented a method for the construction of
a small-world network. They found that networks can be classified by their APL
and clustering coefficient (a measure of how often two neighbouring nodes share a
common neighbour). Using these measures they compared a number of naturally
occurring small-world networks to networks with extremely regular structure as
well as to networks with randomised edges. They found that small-world networks
tend to have a very short APL relative to a structured network, but slightly
longer than a randomised network, whereas the clustering coefficient for small-
world networks tended to be nearly as large as that of regular networks, and far
greater than that of a randomised network. Watts and Strogatz then proposed
a method for constructing small-world networks by first forming a network with
extremely regular structure and replacing randomly selected edges with a new
edge to a randomly selected vertex. By varying the probability with which an
edge is replaced, they found that replacing even a small number of random edges
caused the APL to drop rapidly. A far greater number of edges had to be replaced
in order to reduce the clustering coefficient significantly. This demonstrates that
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an otherwise highly regular large-world network can be converted to a small-
world network through the replacement of randomly selected edges with randomly
generated edges.

In 2001, Comellas and Sampels [5] built on the aforementioned work of Watts
and Strogatz by proposing two methods for the deterministic construction of
small-world networks from an arbitrary initial network. The first method works
by replacing each vertex in the initial graph with a wholly connected network
of k nodes where k is the degree of the original node. Each edge attached to
the original node is then attached to one of the newly created nodes such that
every node in the subgraph has degree k. In this fashion, the size and clustering
coefficient of the network are increased considerably, and the APL is significantly
reduced. Comellas and Sampels go on to show that the resulting network has all
the properties of a small-world network. The second method involves creating
wholly connected subgraphs of arbitrary size for each node in the original network,
and connecting that node to each newly created vertex so as to make it a part
of the wholly connected subgraph. This method again significantly increases the
clustering coefficient and size of the network while also reducing the APL, and
can again be shown to produce small-world networks. This method is also much
more flexible than the first method, and hence is likely more suited to real-world
analysis and design applications. Both of these methods demonstrate that it
is possible to deterministically convert arbitrary graphs to small-world graphs,
thereby significantly reducing the APL. These methods do not, however, allow
for the conversion of arbitrary networks to small-world networks of the same size.

3.3 APL Minimisation Through Edge Addition

While the above methods for conversion to small-world networks are highly ef-
fective, they have some shortcomings when it comes to solving MinAPL and
k-MinAPL. Even though the small-world networks produced have lower APL
than the original network from which they are derived, they are by no means the
optimal solution. In addition to this, the method proposed by Watts and Stro-
gatz is randomised [4], and both of Comellas’ and Sampels’ methods increase
the size of the network [5]. All of these methods are therefore not suitable as
solutions to MinAPL or k-MinAPL.

In their 2009 work, Meyerson and Tagiku [7] consider both the general prob-
lem of k-MinAPL, as well as several more constrained variants of the problem.
They show that k-MinAPL and the variants they consider are all NP-hard for
unbounded k by reduction from the set cover problem. This reduction constructs
a directed acyclic graph containing a common root vertex s, a vertex vS for each
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subset S ∈ C, and a vertex vx for each element x ∈ U , with edges of unit weight
from the s to each vS, and from each vS to vx for all x ∈ S. The sum of all shortest
path lengths from s is therefore |C|+2|U |. The solution to this instance of the set
cover problem can then be found by constructing a set of zero-weight candidate
edges from the root to each subset, and iterating over all k ≤ |C| to find the
minimum value of k for which k-MinAPL has a solution that reduces this short-
est path length sum by at least k + |U |, as this would indicate that the shortest
paths from the root to each of those k subsets has been shortened by 1, as have
the shortest paths from the root to each element, and hence that these k sub-
sets cover all the elements in U . This implies that the existence of a polynomial
time solution to the single-source variant of k-MinAPL would therefore imply
the existence of a polynomial time solution to the set cover problem, and hence
k-MinAPL must itself be NP-hard. They go on to show that this implies a num-
ber of other variants of k-MinAPL, including the variant defined in Section 2.3,
are also NP-hard. Meyerson and Tagiku propose a number of polynomial-time
approximation algorithms for k-MinAPL and its variants, but do not propose
any methods for computing exact solutions to MinAPL or k-MinAPL.

Gaur et al. consider the MinAPL problem in their 2014 work [16]. However,
they constrain the problem by insisting the graph be unweighted and undirected.
This allows them to compute the APSP and hence the APL in O(|V |2 log|V |),
presumably using Reddy and Iyer’s [17] APSP algorithm for unweighted, undi-
rected graphs, though they do not specify the APSP algorithm used. For each
new edge being considered, Gaur et al. compute the APL and retain the single
edge that most reduces the APL compared to the original graph. As there are
|S| new edges to consider, this algorithm has time complexity O(|S||V |2 log|V |).
The algorithm has a number of real-world applications, but its inability to han-
dle weighted or directed graphs reduces its versatility and usefulness in many
real-world problems.

3.4 Applications

This section covers two potential applications of the APL problem, but consider-
ing the huge variety of theoretical and real-world systems that can be modelled
as graphs, it is likely there many other potential applications.

Chang et al. have produced two papers on their proposal to use radio fre-
quency (RF) interconnects in multi-core processor design [1], [2]. The motiva-
tion for this proposal comes from the growing structural complexity of modern
multi-core silicon processors. The complexity of the inter-core communication
architecture increases in order to keep up with bandwidth requirements as the
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number and complexity of the processor cores increases. These network-on-chip
(NoC) architectures pose a challenging optimisation problem, as communication
latency in NoC has a huge impact on the performance of the processor. Chang
et al. propose the use of RF interconnects to allow communications signals to be
transmitted at the speed of light to provide a shortcut between two locations on
the chip to improve overall performance. However, the transceivers for these in-
terconnects can be quite costly to manufacture and take up a lot of space. These
cost and space constraints and the limits on usable RF bandwidth mean that
only a very small number or perhaps only one RF interconnect can be added to
a processor’s network architecture. The ability to compute which edge or edges
provide the greatest reduction in average latency would be valuable when trying
to optimise NoC performance through the addition of RF interconnects.

Ogras and Marculescu [18] discuss a similar application in NoC design for
Very Large Scale Integration (VLSI) design. They investigated the problem of
congestion in highly regular mesh networks with the goal of improving the over-
all capacity of the graph by increasing the required volume of traffic to cause
congestion. By adding a very few long-range links to the network they were able
to improve the capacity of the network significantly and prevent congestion even
at far higher network utilisation. Ogras and Marculescu present an algorithm
for selecting long-range links to add to the mesh network. This algorithm works
by iteratively selecting the single most beneficial link to add and adding it to
the network. Which link is most beneficial is determined by evaluating the net-
work with each link added to produce a congestion measure called the critical
load, λc, and selecting the link that maximises this value. Ogras and Marculescu
show that λc is inversely proportional to the APL in the network, and hence
select the edge that minimises the APL. This algorithm is therefore equivalent to
the repeated application of MinAPL, which means the development of efficient
methods for solving the MinAPL problem has valuable applications in optimising
mesh networks through long-range link addition.

The dynamic APSP problem and related problems have been the focus of
some investigation [19]. The research aims to find ways of maintaining shortest
path information about a graph such that the graph itself can be updatedand
the shortest paths in the graph queried more efficiently than simply recomputing
the shortest path for each query. The dynamic APSP problem is closely related
to MinAPL, as any efficient dynamic APSP algorithm has the potential to be
adapted into an efficient solution to MinAPL. The reverse is likely to also be true,
as any methods that efficiently solve MinAPL must be computing the change in
APSP lengths. As such the dynamic APSP problem is a promising avenue for
further investigation related to MinAPL, and has the potential to be a valuable
application of research relating to MinAPL.

10



CHAPTER 4

Efficient Algorithms for MinAPL

This section proposes two new and highly efficient algorithmic solutions to the
MinAPL problem, and compares their theoretical performance with the brute
force algorithm and with each other.

4.1 Solving MinAPL by Brute Force

Consider the brute force solution to MinAPL. To find the single edge e ∈ S
that minimises the APL of G′ = (V,E ∪ {e}), simply consider each possible e,
construct G′, and compute the APL. By keeping track of which option for e
produced the minimum APL, the optimal solution can be found exhaustively.
Algorithm 1 shows a method for computing the APL of a graph given the graph
and its weighting factors. This method is used by Algorithm 2 to find an optimal
solution to MinAPL by brute force.

The time complexity of Algorithm 2 is a factor of O(|S|) greater than Algo-
rithm 1, which itself has time complexityO(apsp(|V |, |E|)+|V |2) where apsp(|V |, |E|)
is the run time of the APSP algorithm used. The time complexity of Algo-
rithm 1 is dominated by the APSP algorithm used. Using Pettie’s O(|V ||E| +
|V |2 log log|V |) APSP algorithm [13] in Algorithm 1 gives an overall time com-
plexity for Algorithm 2 of O(|S||V ||E| + |S||V |2 log log|V |). Using the Floyd-
Warhsall algorithm instead gives O(|S||V |3). For dense graphs (where |E| ∈
Ω(|V |2)1) these complexities are equivalent. Algorithm 2 requires O(|V |2) mem-
ory in all cases.

1Big Omega notation: f(n) ∈ Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n))
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Algorithm 1 Algorithm for computing the c-weighted APL of a graph G

1: procedure APL(c,G)
2: (V,E)← G
3: d← APSP(G) . Compute the All-Pairs Shortest Paths
4: SPL← 0
5: SWF← 0
6: for i ∈ V do
7: for j ∈ V do
8: SPL← SPL + ci,jdi,j . Undefined if di,j is undefined
9: SWF← SWF + ci,j

10: end for
11: end for
12: APL← SPL/SWF
13: return APL
14: end procedure

Algorithm 2 Brute force algorithm for solving MinAPL

1: procedure MinAPL(c,G, S)
2: (V,E)← G
3: best ← APL(c,G) . Trivial solution
4: choice ← ∅
5: for e ∈ S do
6: G′ ← (V,E ∪ e)
7: APL′ ← APL(c,G′) . APL is undefined for negative cycles
8: if APL′ < best then . False if APL′ is undefined
9: best ← APL′

10: choice ← {e}
11: end if
12: end for
13: return choice
14: end procedure

12



4.2 Ward-Datta Algorithm

Ward and Datta proposed an algorithm that solves MinAPL more efficiently
than the brute force method [20]. This section describes and explains in full the
methods used in this algorithm. Lemmas 1 and 2 demonstrate a property of edge
addition (see Fig. 4.1) that is fundamental to this algorithm.

Lemma 1. Given a graph G = (V,E) with weight function w : E → R, let
p = 〈v0, v1, v2, . . . , vk〉 be a shortest path from vertex v0 to vertex vk and, for any
i and j such that 0 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p
from vertex vi to vj. Then, pij is a shortest path from vi to vj.

Proof. See Cormen et al. [6, p. 645].

Lemma 2. Given a graph G = (V,E) with weight function w : E → R, and a
directed edge e from u ∈ V to v ∈ V , let di,j be the length of the shortest path
from i to j in G, G′ = (V,E ∪ {e}), and d′i,j be the length of the shortest path
from i to j in G′. Then, d′i,j = min(di,j, di,u + w(e) + dv,j).

Proof. Let p′i,j be the shortest simple path from i to j in G′, and pi,j be the
shortest simple path from i to j in G. If p′i,j does not contain e, then an identical
path pi,j must exist in G, and so d′i,j = di,j. Otherwise, if p′i,j contains e, then p′i,j
must contain subpaths from i to u and from v to j. By Lemma 1, any subpath
of a shortest path must itself be a shortest path, meaning p′i,u and p′v,j are both
subpaths of p′i,j. As p′i,j is a simple path, and therefore must not contain a cycle,
neither p′i,u nor p′v,j may contain e, and so identical paths pi,u = p′i,u and pv,j = p′v,j
must exist in G. Therefore p′i,j is the concatenation of pi,u, e, and pv,j, and has
length d′i,j = di,u +w(e) +dv,j. Combining the above cases for whether or not p′i,j
contains e gives the relation d′i,j = min(di,j, di,u + w(e) + dv,j).

Given di,j for all i, j ∈ V and e, the result demonstrated in Lemma 2 gives a
simple arithmetic expression for d′i,j. By applying this expression for all i and j,
the result of computing the APSP lengths in G can therefore be used to compute
the APSP lengths, and hence APL, in G′. Algorithm 3 shows a method for
solving MinAPL by applying this result for each candidate edge e ∈ S. The
method excludes edges that would otherwise introduce a negative-weight cycle,
because a negative-weight cycle can be thought of as a self-path with negative
length, and this means d′u,u = min(du,u, du,u + w(e) + dv,u) = w(e) + dv,u < 0.

Using the analysis results for Algorithm 1 from Section 4.1, time complexity
analysis of Algorithm 3 gives a run time complexity of O(|S||V |2+apsp(|V |, |E|)),
where apsp(|V |, |E|) is the run time of the APSP algorithm used. Using Pettie’s

13



Algorithm 3 Ward-Datta algorithm for solving MinAPL

1: procedure MinAPL(c,G, S)
2: (V,E)← G
3: d← APSP(G) . Compute the All-Pairs Shortest Paths
4: best ← APL(c,G) . Trivial solution
5: choice ← ∅
6: for e ∈ S do
7: (u, v)← e
8: if w(e) + dv,u ≥ 0 then . Avoid negative-weight cycles
9: SPL← 0

10: SWF← 0
11: for i ∈ V do
12: for j ∈ V do
13: d′i,j ← min(di,j, di,u + w(e) + dv,j)
14: SPL← SPL + ci,jd

′
i,j . Undefined if d′i,j is undefined

15: SWF← SWF + ci,j
16: end for
17: end for
18: APL← SPL/SWF
19: if APL < best then . False if APL is undefined
20: best ← APL
21: choice ← {e}
22: end if
23: end if
24: end for
25: return choice
26: end procedure
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e

Figure 4.1: Shown are the shortest paths pi,j = 〈i, . . . , j〉, pi,u = 〈i, . . . , u〉, and
pv,j = 〈v, . . . , j〉 with lengths di,j, di,u, and dv,j respectively. After adding the
edge e to the graph, the shortest path from i to j is either unchanged or is now
p′i,j = 〈i, . . . , u, v, . . . , j〉, and has length d′i,j = min(di,j, di,u + w(e) + dv,j).

O(|V ||E|+ |V |2 log log|V |) APSP algorithm [13] gives an overall time complexity
for Algorithm 3 of O(|S||V |2+|V ||E|+|V |2 log log|V |). Using the Floyd-Warhsall
algorithm instead gives O(|S||V |2 + |V |3). For dense graphs (defined by |E| ∈
Ω(|V |2)) these complexities are equivalent. This is a significant improvement in
performance compared to the brute force method discussed in Section 4.1. It
eliminates a full factor of |V | in dense graphs, and performs at least as well as
the brute force method in all cases. Memory complexity remains O(|V |2) in all
cases, as it does in the brute force method.

4.3 Threshold Algorithm

The threshold algorithm is a novel algorithm based on the same underlying logic
as the Ward-Datta algorithm described in Section 4.2, and affords significant
improvements in performance for large |S|. This section describes the methods
used to achieve these results. Recall the relation from Lemma 2:

d′i,j = min(di,j, di,u + w(e) + dv,j) (4.1)

where di,j is the length of the shortest path from i to j in G = (V,E), e is
an edge from u to v, and d′i,j is the length of the shortest path from i to j in
G′ = (V,E ∪ {e}). Using this result, the change in path length ∆di,j is defined
as:

∆di,j = d′i,j − di,j = min(0, di,u + w(e) + dv,j − di,j) (4.2)
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which has piecewise definition:

∆di,j =

{
di,u + w(e) + dv,j − di,j if di,u + w(e) + dv,j − di,j < 0,

0 else
(4.3)

Note that for this formulation to be well-defined, di,u +w(e) + dv,j and di,j must
not both be infinite, and ideally should be strictly real-valued. This precludes an
infinite disconnection cost D (as described in Section 2.1). However, the same
results are achieved by selecting a sufficiently large finite value for D such that
it is greater than all values that will be compared to it. A threshold value Ti,v,j
is defined, and Eq. (4.3) is rearranged as follows:

Ti,v,j = di,j − dv,j (4.4)

∆di,j =

{
di,u + w(e)− Ti,v,j if di,u + w(e) < Ti,v,j,

0 else
(4.5)

Figure 4.2 gives a graphical representation of the threshold value. The total
change in the SPL as a result of adding edge e to E is:

∆SPL =
∑
i∈V

∑
j∈V

ci,j∆di,j (4.6)

Observe that only values of i and j such that di,u + w(e) < Ti,v,j contribute to
the sum in Eq. (4.6), and that the left-hand side of this condition is independent
of j. Therefore the subset V ′i ⊆ V can be defined and substituted into Eq. (4.6)
as follows:

V ′i = {j ∈ V | di,u + w(e) < Ti,v,j} (4.7)

∆SPL =
∑
i∈V

∑
j∈V ′

i

ci,j∆di,j =
∑
i∈V

∑
j∈V ′

i

ci,j(di,u + w(e)− Ti,v,j)

=
∑
i∈V

(di,u + w(e))
∑
j∈V ′

i

ci,j −
∑
j∈V ′

i

ci,jTi,v,j

 (4.8)

If the elements of {Ti,v,j | j ∈ V } are sorted by ascending value, the elements of
{Ti,v,j | j ∈ V ′i } form a contiguous suffix of the sorted list. A binary search on the
sorted elements gives the bounds of this suffix. A pair of cumulative sum arrays
can then be used to compute the two sums over V ′i in Eq. (4.8). A cumulative
sum array is a simple data structure that allows the sum of a contiguous range
of elements in a list to be computed in constant time. Let C be a sum array for
some given numeric list. The n-indexed element Cn of the sum array is the sum
of the first n elements of the original list. The sum of all elements in the index
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Algorithm 4 Threshold algorithm for solving MinAPL

1: procedure MinAPL(c,G, S)
2: (V,E)← G
3: d← APSP(G) . Compute the All-Pairs Shortest Paths
4: ∆SPLe ← 0 ∀ e ∈ S . Initialise change in SPL for each edge
5: for i ∈ V do
6: for v ∈ V do
7: for j ∈ V do
8: Ti,v,j ← di,j − dv,j . Compute thresholds as in (4.4)
9: end for

10: Ji,v ← SortInds(V, T ) . Sort j ∈ V by value Ti,v,j
11: Wv,0 ← 0 . Cumulative sum for c-weighted T ordered by J
12: Cv,0 ← 0 . Cumulative sum for weights c ordered by J
13: for ind ∈ [0, |V |) do
14: j ← Ji,v,ind
15: T ′i,v,ind ← Ti,v,j . T sorted by ascending value
16: Wv,ind+1 ← Wv,ind + ci,jTi,v,j
17: Cv,ind+1 ← Cv,ind + ci,j
18: end for
19: end for
20: for e ∈ S do
21: (u, v)← e
22: if w(e) + dv,u ≥ 0 then . Avoid negative-weight cycles
23: L← di,u + w(e) . Path length from i to v through e
24: l← BinarySearchUpperBound(T ′i,v, L)
25: ∆SPLe ← ∆SPLe + (Cv,|V | − Cv,l)L− (Wv,|V | −Wv,l)
26: end if
27: end for
28: end for
29: best ← 0 . Trivial solution
30: choice ← ∅
31: for e ∈ S do
32: if ∆SPLe < best then
33: best ← ∆SPLe

34: choice ← {e}
35: end if
36: end for
37: return choice
38: end procedure
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i j

v
pv,j

pi,j

Ti,v,j

Figure 4.2: Shown are the shortest paths pi,j = 〈i, . . . , j〉 and pv,j = 〈v, . . . , j〉
with lengths di,j and dv,j respectively. The threshold value Ti,v,j = di,j − dv,j is
the required length of the hypothetical shortest path pi,v = 〈i, . . . , v〉 such that
the shortest path pi,v,j = 〈i, . . . , v, . . . , j〉 has length equal to that of pi,j.

range [i, j) is then Cj − Ci. The cumulative sum array for any given list can be
computed in linear time in the size of the input list. Algorithm 4 shows a method
for solving MinAPL using this result.

The function SortInds(V, T ) on Line 10 of Algorithm 4 is a function that
sorts the elements j ∈ V in ascending order according to the corresponding
value of Ti,v,j. This gives an ordering Ji,v of V for which Ti,v,j increases mono-
tonically, which can be used to compute the cumulative sum arrays Wv and
Cv, as well as a monotonically increasing ordering T ′i,v of Ti,v. The function
BinarySearchUpperBound(T ′i,v, L) on Line 24 of Algorithm 4 is a function
that performs a binary search over the ordering T ′i,v and returns an index l, the
minimum 0-based index for which T ′i,v,l > L, or |T ′i,v| if no such l exists. This index
is then used on Line 25 of Algorithm 4 in conjunction with the aforementioned
cumulative sum arrays to compute a partial sum from Eq. (4.8) for a particular
i and e. By looping over all i ∈ V and all candidate edges e ∈ S it is possible
to compute the change in SPL as a result of adding edge e, ∆SPLe, and e can
therefore be selected to minimise the SPL and hence the APL in G′ = (V,E∪{e}).

Time complexity analysis of Algorithm 4 gives a run time complexity of
O(apsp(|V |, |E|)+|V |3 log|V |+|V ||S| log|V |), where apsp(|V |, |E|) is the run time
of the APSP algorithm used. Using Pettie’s O(|V ||E| + |V |2 log log|V |) APSP
algorithm [13] gives an overall time complexity for Algorithm 3 of O(|V |3 log|V |+
|V ||S| log|V |). Using the Floyd-Warhsall algorithm instead gives the same result,
as both APSP algorithms are dominated by the O(|V |3 log|V |) component of the
algorithm. For large |S| (i.e., |S| ∈ Ω(|V |2)), this is a significant improvement in
performance over the Ward-Datta algorithm described in Section 4.2, giving run
time O(|V |3 log|V |) as opposed to O(|V |4). For small |S|, however, the Ward-
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Table 4.1: Example weighting factors ci,j for i = 0.

j 0 1 2 3 4 5 6
ci,j 0 2 1 2 1 1 2

Datta algorithm will outperform this algorithm. Memory complexity remains
O(|V |2) in all cases, as in both the brute force method and the Ward-Datta
algorithm.

4.3.1 Example

This example is a partial demonstration of the threshold algorithm for the graph
shown in Fig. 4.3, with weighting factors ci,j from Table 4.1. For the sake of
brevity, the algorithm is demonstrated only for the subset of paths starting at
i = 0. Threshold values for this example are computed from the shortest path
lengths in Table 4.2, and listed in Table 4.3. To compute the result of adding the
single edge e = (1, 4) = (u, v) to the graph, consider the v = 4 row of Table 4.3.
Table 4.4 gives this row sorted into ascending order, with corresponding weighting
factors ci,j and weighted threshold values ci,jTi,v,j. Table 4.5 lists the cumulative
sum arrays for these values. A binary search for the upper bound of di,u +
w(e) = 2 finds the highlighted column from Table 4.5. Subtracting these values
from their corresponding overall sums gives the values of the sums

∑
j∈V ′

i
ci,j and∑

j∈V ′
i
ci,jTi,v,j. Substituting these values into Eq. (4.8) gives the total change in

shortest path length as a result of adding e for all paths starting at i:

∆SPLi = (di,u + w(e))
∑
j∈V ′

i

ci,j −
∑
j∈V ′

i

ci,jTi,v,j

= 2(9− 4)− (15−−22)

= −27

(4.9)

Repeating this process for each starting vertex i ∈ V and summing the results
gives the total change in SPL as a result of adding e to the graph. Note that it is
not necessary to recompute the cumulative sum arrays for different e. Applying
this method for all e ∈ S finds the edge that minimises the APL.
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Figure 4.3: Example graph with edge weights.

Table 4.2: Shortest path lengths di,j

i
j

0 1 2 3 4 5 6

0 0 1 4 8 13 5 9
1 14 0 18 9 14 13 10
2 2 3 0 6 10 1 6
3 5 6 9 0 5 4 1
4 7 8 11 2 0 6 3
5 1 2 5 5 10 0 6
6 4 5 8 6 4 3 0

Table 4.3: Threshold values Ti,v,j = di,j − dv,j for i = 0.

v
j

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 -14 -1 -14 -1 -1 -8 -1
2 -2 -2 -4 2 3 4 3
3 -5 -5 -5 8 8 1 8
4 -7 -7 -7 6 13 -1 6
5 -1 -1 -1 3 3 5 3
6 -4 -4 -4 2 9 2 9
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Table 4.4: Sorted threshold values Ti,v,j for i = 0, (u, v) = e = (1, 4), with
corresponding ci,jTi,v,j and ci,j.

j 0 1 2 5 3 6 4
Ti,v,j -7 -7 -7 -1 6 6 13
ci,jTi,v,j 0 -14 -7 -1 12 12 13
ci,j 0 2 1 1 2 2 1

Table 4.5: Sorted threshold values Ti,v,j for i = 0, (u, v) = e = (1, 4), with
corresponding cumulative sums for ci,jTi,v,j and ci,j.

Ti,v,j -7 -7 -7 -1 6 6 13∑
ci,jTi,v,j 0 0 -14 -21 -22 -10 2 15∑
ci,j 0 0 2 3 4 6 8 9
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CHAPTER 5

Empirical Analysis

This section reviews the efforts made to empirically analyse the correctness and
performance of the algorithms described in Chapter 4. The algorithms were im-
plemented in C++11 and were compiled and run using the GNU C++ Compiler
version 5.4.0 with -O2 optimisation enabled under Kubuntu Linux version 16.04
running on an Intel Core i7-6700K processor. The Floyd-Warshall algorithm was
used to compute the APSP in this implementation.

5.1 Random Graph Generation

To test these algorithms thoroughly requires a source of pseudorandom weighted
directed graphs without negative-weight cycles—negative-weight cycles would
trivialise the problem. For the sake of this analysis, these graphs are constructed
programmatically, given |V |, |E| and a minimum and maximum edge weight,
by selecting a random ordering of all |V |2 − |V | possible edges. Edges are then
added to the graph one by one from the random ordering, with weights selected
randomly such that they remain within the specified bounds and do not form
a negative cycle with any edges already in the graph. If no such weight is pos-
sible the edge is discarded. This continues until either the graph contains the
desired number of edges or the random ordering is exhausted, in which case the
graph generator has failed. The likelihood of this method failing is dependent on
the size of the graph and the weight range given, but failure is very unlikely for
appropriate weight limits.

5.2 Correctness Validation

The three MinAPL algorithms described in Chapter 4 were run repeatedly on
randomly generated input, and their outputs were compared. If any two algo-
rithms disagreed on the minimum achievable APL the test case was considered
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to have failed. The algorithms were tested for |V | = 50, randomly selected |E| ∈
[250, 2000], and |S| = 1000, with weights in the range w(e) ∈ [−50, 150], weight-
ing factors in the range ci,j ∈ [0, 5], andD = 1000|V |3cmaxwmax = 1000(503)(5)(150).
All three MinAPL algorithms were validated against more than 30,000 test cases
for integer-valued edge weights and weighting factors, and over 120,000 test cases
for real-valued edge weights and weighting factors. No tests failed.

5.3 Run Time Analysis

The three MinAPL algorithms described in Chapter 4 were run repeatedly on
randomly generated input, and their run time recorded. Timing data was col-
lected using C++’s chrono library, and processes were given maximum priority
to minimise noise due to external processes. The algorithms were tested for
|S| = 0, 100, 200, . . . , 10000, and for |V | automatically selected for each value of
|S| and for each algorithm to cover all run times up to 500 milliseconds to a
time resolution of no more than 20 milliseconds. As |E| does not affect the run
time performance of any of these implementations, all tests were performed with
|E| = b(3/4)|V |(|V | − 1)c. Similarly, these tests were performed with uniform
weighting factors ci,j = 1 for all i, j ∈ V , as the values of these factors have no
effect on run time.

Figures 5.1–5.6 show the results of these tests plotted jointly for comparison
over |S| = 100, 500, 1000, 2000, 5000, 10000. It is readily apparent from these
figures that the run time of the the brute force algorithm far exceeds that of
the Ward-Datta and threshold algorithms for any significant value of |S|. They
also show that while the Ward-Datta algorithm grows more slowly with |V |, and
hence initially outperforms the threshold algorithm, this does not hold true as
|S| increases. From close inspection it appears that the run time of both the
Ward-Datta and the threshold algorithm grow linearly with |S|, but the run
time of the Ward-Datta algorithm grows much faster than that of the threshold
algorithm. These results agree with the time complexity analyses from Chapter 4.
Some noise is present in the run time for the threshold algorithm, though this
is suspected to be a result of sorting randomized data, and does not appear to
affect performance significantly.
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Figure 5.1: Run times for brute force (BF), Ward-Datta (WD), and threshold
(TH) algorithms for |S| = 100

24



0 100 200 300 400 500 600 700
0

100

200

300

400

500

V

R
u

n
ti

m
e
(m

s
)

BF

WD

TH

Figure 5.2: Run times for brute force (BF), Ward-Datta (WD), and threshold
(TH) algorithms for |S| = 500
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Figure 5.3: Run times for brute force (BF), Ward-Datta (WD), and threshold
(TH) algorithms for |S| = 1000
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Figure 5.4: Run times for brute force (BF), Ward-Datta (WD), and threshold
(TH) algorithms for |S| = 2000
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Figure 5.5: Run times for brute force (BF), Ward-Datta (WD), and threshold
(TH) algorithms for |S| = 5000
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Figure 5.6: Run times for brute force (BF), Ward-Datta (WD), and threshold
(TH) algorithms for |S| = 10000
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CHAPTER 6

Algorithm Extensions

This section explores extensions and modifications that can be made to the al-
gorithms described in Chapter 4 in order to solve related problems.

6.1 k-MinAPL

It is possible to adapt the Ward-Datta MinAPL algorithm described in Section 4.2
to solve k-MinAPL. The fundamental principal behind the Ward-Datta algorithm
is its ability to take a precomputed set of APSP lengths di,j for a graphG = (V,E)
and use this to generate the APSP lengths d′i,j for a graph G′ = (V,E ∪ {e}) for

some edge e in O(|V |2) time. The same method can be used to add another
edge to the graph repeatedly in order to add any arbitrary set of edges F to
the graph in O(|F ||V |2) time. The number of subsets F ⊆ S of size exactly
|F | = f is

(|S|
f

)
= |S|!/f !/(|S| − f)!, and the minimum APL can be computed

as a result of adding exactly f edges from S in O(
(|S|

f

)
f |V |2) time, which has a

safe upper bound of O(|S|ff |V |2). The minimum APL value is a result of adding
up to k edges from S in O(

∑k
f=0

(|S|
f

)
f |V |2), which has a safe upper bound of

O(|S|kk|V |2).

6.2 Undirected Edges

Both the Ward-Datta and threshold algorithms can readily be adapted to solve
MinAPL in undirected graphs. First, the input graph is converted to a directed
graph by replacing each undirected edge between u and v with a pair of directed
edges (u, v) and (v, u), each with the same weight as the original edge. Note that
to prevent negative-weight cycles, undirected graphs must not have negative edge
weights, because even a single negative-weight edge introduces a trivial negative
cycle between the two ends of the edge. Adding a new undirected edge to the
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graph is equivalent to adding a pair of opposite-facing directed edges of the same
weight. It is simple to adapt the Ward-Datta algorithm to handle this, because
the result from Lemma 2 on which the algorithm is based can be adapted to
undirected graphs by considering traversing the edge in either direction, which
gives d′i,j = min(di,j, di,u +w(e) + dv,j, di,v +w(e) + du,j). Adapting the threshold
algorithm, however, requires a less intuitive observation.

Observe that the threshold algorithm only counts a path towards the total
change in SPL if di,u +w(e) < Ti,v,j = di,j−dv,j. If two edges are simply added at
once, there is a risk of counting the same path twice if both di,u+w(e) < di,j−dv,j
and di,v + w(e) < di,j − du,j. Observe that for all i, j, and u, di,j ≤ di,u + du,j,
because otherwise di,j cannot be the length of the shortest path, as di,u + du,j
is shorter. Substituting this relation into the conditions above implies that in
order to count the same path twice, both di,u +w(e) < di,v and di,v +w(e) < di,u
must hold. It is readily apparent that there is no valid (that is, non-negative)
value for the edge weight w(e) that satisfies both of these conditions, and hence
the threshold algorithm will count each path at most once. This means that
the threshold algorithm can be adapted to solve undirected MinAPL by simply
computing and summing the change in SPL as a result of traversing the new edge
in either direction.

6.3 Candidate Edge Set Reduction

In most cases, the size of the candidate edge set S will be |S| ∈ O(|V |2). In
the event that this is not the case it is possible to reduce the set of candidate
edges S so as to further optimise the Ward-Datta algorithm and the threshold
algorithm for large S. Firstly, discard all edges that would otherwise introduce
a negative-weight cycle (That is, w(e) + dv,u < 0). Now consider the case where
S contains multiple edges from u to v with a range of weights. Lemma 2 gives
the relation d′i,j = min(di,j, di,u +w(e) + dv,j). Hence, for a pair of edges e, f ∈ S,
both going from u to v and with w(e) ≤ w(f), min(di,j, di,u + w(e) + dv,j) ≤
min(di,j, di,u + w(f) + dv,j). It follows from this that the new shortest path
length d′i,j, and hence the APL produced by adding e to G, is no greater than
that produced by adding f , and therefore e is at least as good a solution to the
MinAPL problem as f . For each pair of vertices u, v ∈ V , there exists a single
edge from u to v that has weight no greater than all other edges from u to v,
and it is sufficient to consider only this edge. Algorithm 5 shows a method for
performing this reduction.

Analysis of Algorithm 5 shows that it is able to reduce S to size |S| ≤ |V |2−|V |
using O(|S|) time and O(|V |2) memory. The algorithm does require the set of
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Algorithm 5 Algorithm for eliminating unnecessary elements in S

1: procedure ReduceS(d, S)
2: for e ∈ S do
3: (u, v)← e
4: if w(e) + dv,u ≥ 0 then . Avoid negative-weight cycles
5: if w(e) < w(S ′u,v) then
6: S ′u,v ← e
7: end if
8: end if
9: end for

10: return S ′

11: end procedure

shortest path lengths as input, but computing this is already part of both the
Ward-Datta algorithm and the threshold algorithm. Performing this algorithm
as a preprocessing step gives an overall time complexity for the Ward-Datta algo-
rithm of O(|V |4+|S|), and an overall time complexity for the threshold algorithm
of O(|V |3 log|V |+|S|). For both algorithms this is a significant improvement only
for |S| ∈ Ω(|V |2).
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CHAPTER 7

Conclusion

Since their discovery by Milgram [3], small-world networks and their properties
have been a topic of significant interest in graph theory. Their helpful properties
of low APL and high clustering coefficient have driven attempts to construct
methods for converting arbitrary graphs to small-world graphs [4], [5]. These
methods have their failings however, and minimising the APL in a fixed-size
graph through edge addition proved to be a challenging optimisation problem,
with the general problem of k-MinAPL being shown to be NP-hard [7]. The
simpler MinAPL problem of selecting a single edge to minimise the APL in a
graph has recently become a topic of interest [16]. The research described in this
report is motivated by the applications of this problem in network optimisation
for high-performance multi-core processor design [1], [2], [18], as well as potential
applications resulting from efficiently solving the dynamic APSP and related
problems [19]. However, much work remains to be done in investigating efficient
methods for solving MinAPL. One potential avenue of enquiry is to develop
methods for solving this problem in constrained, non-general graphs, where the
additional properties of the graph may simplify the problem. This report presents
a pair of efficient algorithms for solving MinAPL in general graphs, providing
significant improvements in performance over the previous best known methods.
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To: Whomsoever it may concern

From: Andrew Gozzard, 20948678@student.uwa.edu.au

Subject: Honours Project Proposal

Title: Investigation of Average Shortest Path Distance Minimisation via Shortcut Edge
Addition in Non-General Graphs

Date: 2016-10-22

In accordance with the requirements of my course, I would like this document
to be considered as a formal project proposal for my Honours in Computer Science
and Software Engineering. I hope to undertake this project under the supervision of
Professor Amitava Datta and his PhD candidate, Max Ward.

1 Introduction

Many real-world networks suffer from end-to-end delays. These delays are the re-
sult of the additive effect of long, multi-hop paths through the network. Fall [2] has
previously shown that the addition of a few random links to the network can signifi-
cantly reduce the average end-to-end delay in a network. By modelling these networks
as graphs, where the weight of an edge corresponds to the link transmission latency,
the average end-to-end delay becomes the average shortest path length (APL) across
all pairs of vertices. The problem of selecting which links to add so as to minimise the
average end-to-end delay in the network now becomes a graph theoretic problem with
an algorithmic solution. Meyerson and Tagiku [4] have shown that the general prob-
lem of adding k edges to a general graph in order to minimise the APL is NP-hard,
and have designed a number of approximation algorithms aimed at achieving good
solutions to this problem in reasonable time. Recently, Gaur et al. studied the related
problem of converting an arbitrary, unweighted, undirected network to a small-world
network through link addition [3]. A small-world network is defined to be a graph
where the APL grows proportionally with the logarithm of the number of vertices
in the graph, and hence the shortest path between two nodes tends to be relatively
small. Gaur et al. propose an O(V 4 log V ) algorithm for selecting the best single edge
to add to an unweighted, undirected graph G = (V,E) to minimise the APL in the
graph. Ward and Datta have proposed the existence of an O(V 4) algorithm, though
their work awaits peer review [6].

These works have real-world applications including the optimisation of computer
networks [2, 3], as well as in microprocessor design [4], and in Network-on-Chip
(NoC) development in Very-Large Scale Integration (VLSI) design [5]. In a number
of these applications, the network in question can be modelled as some class of non-
general graph; for instance, VLSI design problems can be modelled as circle graphs
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[1], and wireless communication networks can be modelled as Euclidean graphs due
to the nature of the electromagnetic transmission medium. Despite this, preliminary
readings suggest no or very little work has been done on APL minimisation in these
classes of non-general graphs.

The aim of this project, therefore, is the investigation of average shortest path dis-
tance minimisation via shortcut edge addition in non-general graphs. Specifically, to
explore the possibility of there being significantly faster algorithms for solving this
problem in those classes of non-general graphs that have real-world networking ap-
plications, such as those given above.

2 Aims and Open Problems

In my work I aim to investigate in particular the single edge addition APL minimi-
sation problem (MinAPL) and the k edge addition version of the same (k-MinAPL) in
different classes of non-general graphs. A full literature review would allow me to de-
termine which classes of non-general graph are most applicable to the real-world and
so allow me to prioritise particular avenues of enquiry. Preliminary readings suggest
that circle and Euclidean graphs hold the most promise and so are the most immedi-
ately worthy of attention. As such, the open problems I hope to address include:

• Does there exist an algorithmic solution to MinAPL or k-MinAPL on circle graphs
that is of lower time complexity than the best known solution on general graphs?

• Does there exist an algorithmic solution to MinAPL or k-MinAPL on 2D Eu-
clidean graphs that is of lower time complexity than the best known solution on
general graphs?

• (Extension) Does there exist an algorithmic solution to MinAPL or k-MinAPL on
higher-dimensional Euclidean graphs that is of lower time complexity than the
best known solution on general graphs?

• (Extension) Does there exist an algorithmic solution to MinAPL or k-MinAPL
on other classes of non-general graphs (or combinations thereof) that is of lower
time complexity than the best known solution on general graphs?

Problems marked with (Extension) may be subject to progress and developments
made on other related problems. A complete literature review and further investi-
gation may reveal other promising open problems. Hence this list may be subject to
change.

3 Time-line and Planning

Of course the first phase in my work for this project would be to complete a full
literature review. Doing so would allow me to prioritise the various open problems
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given above and construct a schedule for working on them. As a requirement of my
course this literature review is required to be completed by the end of first semester,
though I hope to have it completed well ahead of time to allow myself enough time
to investigate as many open problems as possible. I then intend to spend some time
investigating the common background of the problems and the theory of MinAPL and
k-MinAPL in general graphs to ensure a proper understanding of the problems. The
aforementioned schedule would then allow some time to each problem. The schedule
will include an overflow period to leave time for any problems that require extra work,
and time to prepare the work for submission before the required deadlines. With this
plan I believe myself capable of addressing most if not all of the open problems given
above.

4 Closing Note

With what investigation I have been able to complete since learning of this project, I
believe I have the ability to do good work in this topic. I also believe that this work will
be quite valuable in the real-world applications mentioned above. I hope this proposal
appears as promising to you as it does to me. Please do not hesitate to contact me with
any enquiry related to this proposal, and I will answer to the best of my ability.
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