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Abstract

I present an overview of several problems in the field of intersection graphs of geometric objects
and algorithms for solving these problems. An introduction to geometric intersection graphs and a
taxonomy of relevant classes is provided, as is a taxonomy of relevant problems. Here I present a
brief overview of the main results of my work in this field.

The class of polygon-circle graphs is the class of intersection graphs of polygons inscribed in
a common circle. Polygon-circle graphs have applications in bioinformatics, chemistry, and very
large-scale integration of integrated circuits. The problems of polygon-circle graph recognition and
representation have been of interest for some time, particularly given Koebe’s announcement of a
polynomial-time recognition algorithm [33] that was never successfully completed, and Pergel’s later
result that polygon-circle graph recognition is NP-complete [43]. I discuss methods for recognising
and constructing intersection representations of polygon-circle graphs, and present a novel approach
based on constructing optimal pseudocyclic deterministic finite automata that accept only valid
alternating sequence [4] representations of a given polygon-circle graph. Empirical assessments find
this method to be more performant than the alternative methods, and demonstrate the practicality
of this approach by using it to show by exhaustive search that the 3-prism is the minimal non-
polygon-circle graph, a result that leads to and is supported by the proof in the Chapter 3.

The class of interval filament graphs is the class of intersection graphs of curves constrained
to be above intervals of the real line. While it was already known that polygon-circle graphs are
a proper subclass of interval filament graphs [19, 29], the proof of this used an involved analysis
of the thresholds at which random graphs in the limit to infinity develop certain properties, and
so was not a constructive proof. Based on the experimental finding from Chapter 2, I present a
constructive proof that the 3-prism is an interval filament graph but not a polygon-circle graph,
thereby providing a constructive proof that polygon-circle graphs are a proper subset of interval
filament graphs. This is the first such constructive proof of this property.

The class of circular-arc graphs is the class of intersection graphs of arcs of a common circle.
These classes have applications in periodic and non-periodic scheduling tasks. The average path
length minimisation problem asks in a weighted graph what edge from a set of candidate edges will
result in the minimum possible average path length when added to a graph. I discuss solutions to
the problem of average path length minimisation in circular-arc graphs, and present both methods
that work in general graphs and others that take advantage of the optional requirement that the
graph remain a circular-arc graph after the addition of the selected edge. These methods generalise
to subclasses of circular-arc graphs including interval graphs.

The class of interval graphs is the class of intersection graphs of intervals of the real line. Interval
graphs have applications in resource allocation and scheduling problems. The problem of finding
a maximum internal spanning tree (that is, a spanning tree with the minimum possible number of
leaves) in an interval graph has been a recent topic of investigation by Li, Feng, Jiang, and Zhu
[38]. I discuss this result, and present a counterexample for which their algorithm does not work. I
then discuss the relationship of this problem to the Hamiltonian path problem (finding a path that
visits every vertex exactly once) and generalise a known greedy algorithm for Hamiltonian path in
interval graphs [39] to derive a greedy algorithm for finding a maximum internal spanning tree for
a given interval graph.
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Chapter 1

Introduction

1.1 Overview of Contributions

I present several problems in the field of intersection graphs of geometric objects and algorithms for
solving these problems.

Chapter 2 covers the problems of polygon-circle graph recognition and representation. Polygon-
circle graphs have applications in bioinformatics, chemistry, and very large-scale integration of inte-
grated circuits. The problems of polygon-circle graph recognition and representation have been of
interest for some time, particularly given Koebe’s announcement of a polynomial-time recognition al-
gorithm [33] that was never successfully completed, and Pergel’s later result that polygon-circle graph
recognition is NP-complete [43]. I initially present Bouchet’s alternating sequence representation of
polygon-circle graphs [4] and use this to construct a naive, brute-force enumeration method for the
representation problem. This approach leads to the exploration of many behaviourally equivalent
states, which suggests the development of an O(4|V |2−|V ||V |4) dynamic programming solution that is
much faster than the brute force method but requires O(4|V |2−|V |) memory. I then present another
novel approach based on constructing optimal pseudocyclic deterministic finite automata that accept
only valid alternating sequence [4] representations of a given polygon-circle graph. With appropriate
construction techniques this algorithm requires O(

√
8
|V |2−|V ||V |2) time and O(

√
8
|V |2−|V |

) memory at
worst, though in practice it appears much better than this upper bound suggests. Empirical assess-
ments show this algorithm to be more performant than the alternative methods, though it is of course
still exponential in complexity. I demonstrate the practicality of this approach by using it to show by
exhaustive search that the 3-prism is the minimal non-polygon-circle graph — a result that leads to,
and is supported by, the proof in the Chapter 3.

Chapter 3 presents a constructive proof that polygon-circle graphs are a proper subclass of interval
filament graphs. While this result was already known [19, 29], the proof of this used an involved
analysis of the thresholds at which random graphs in the limit to infinity develop certain properties,
and so was not a constructive proof. Based on the experimental finding from Chapter 2, I present
a constructive proof that the 3-prism is an interval filament graph but not a polygon-circle graph,
thereby providing a constructive proof that polygon-circle graphs are a proper subset of interval
filament graphs. This marks the first such constructive proof of this property.

1



1. INTRODUCTION

Chapter 4 covers my work on average path length minimisation through shortcut edge addition
in circular-arc graphs. Circular-arc graphs and their subclass of interval graphs have applications in
periodic and non-periodic scheduling tasks respectively. Ward and Datta [49] proposed a straightfor-
ward O(|V |3+ |S||V |2) solution for general graphs by updating the distance matrix for each candidate
edge. I present an algorithm of my own design based on computing the weight thresholds at which
any new edge becomes a part of the shortest paths. Using cumulative sums of ordered ranges of these
thresholds we can compute the change in total shortest path lengths in O(|V |3 log|V |+ |V ||S| log|V |),
resulting in better performance for large |S|. Using an O(|V |2) all-pairs shortest path algorithm for
circular-arc graphs by Saha, Pal, and Pal [45] it is then possible to construct an O(|S||V |2) algorithm,
which is faster than Ward and Datta’s algorithm in general, and faster than the threshold algorithm
for |S| ∈ O(|V | log |V |), but is still outperformed by the threshold algorithm for large |S|. These
methods generalise to subclasses of circular-arc graphs, including interval graphs.

Chapter 5 discusses algorithms for solving the maximum internal spanning tree (MIST) problem
in interval graphs. Firstly we consider the state of the art algorithm by Li, Feng, Jiang, and Zhu
[38] with stated time complexity O(|I|2) where |I| is the number of intervals in the interval graph. I
present a counterexample for which their algorithm fails to find a MIST and discuss lemmas used in
their proof of correctness that appear not to hold in this case. The MIST problem can be considered
a generalisation of the Hamiltonian path problem, because if a Hamiltonian path exists, it would also
be a valid MIST. There exists a polynomial-time greedy algorithm for the Hamiltonian path problem
in interval graphs by Manacher, Mankus, and Smith [39]. I present a novel generalisation of this
algorithm to solve the MIST problem, and prove its correctness. This algorithm can be implemented
in O(|I| log |I|) time, outperforming existing solutions, and is the only correct polynomial-time interval
MIST algorithm of which I am aware.

1.2 Graphs

The study of graphs as mathematical objects is typically considered to date back to Euler’s paper on
the Seven Bridges of Königsberg published in 1736. Königsberg spanned either side of the Pregel river
and two islands, Kneiphof and Lomse, in the river itself, with the land masses connected by seven
bridges as depicted in Figure 1.1. An open question at the time asked if there was any route through
the city that would cross each bridge exactly once. By abstracting the land masses as vertices and
the bridges as edges, Euler was able to reason about the properties any route through the city must
have. In particular, for any vertex that is not the start or the end of the route, for every time we
enter the vertex we must also exit it. This means that each vertex other than the start and end must
have an equal number of edges crossed each way, and so must have an even number of edges in total.
Therefore, since all four vertices had an odd number of edges, there could not possibly be a route that
visited all of the bridges exactly once.

Definition 1.2.1. Simple Graph: A simple graph is a pair G = (V,E) of a set of vertices V and a
set of edges E ⊆ {{u, v} | u, v ∈ V, u = v}. The presence of the unordered pair {u, v} ∈ E denotes the
existence of an edge between the vertices u and v. We say that the edge {u, v} is incident on u and
v, making them adjacent. The total number of edges incident on a vertex is called its degree.
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Kneiphof

Lomse

North Bank

South Bank

(a) Map showing the bridges as they were in 1736.

N

K

S

L

(b) Graph representation of the land masses
and the bridges between them. The vertices
correspond to the North Bank (N), South
Bank (S), Kneiphof (K) and Lomse (L).

Figure 1.1: Map and graph representation of the seven bridges of Königsberg.

This definition precludes the existence of parallel edges (multiple edges between the same pair of
vertices) or loops (edges from a vertex to itself). While there exist problems for which it is useful
to be able to represent parallel edges or loops, for the purpose of this work we consider only simple
graphs without such features.

1.2.1 Definitions

We can make several definitions that are useful when talking about the properties and structures of
various graphs.

Definition 1.2.2. Subgraph: A subgraph of a simple graph G = (V,E) is a simple graph G′ =

(V ′, E′) where V ′ ⊆ V and E′ ⊆ E.

Definition 1.2.3. Complete Graph: A complete graph is a simple graph G = (V,E) where E =

{{u, v} | u, v ∈ V, u = v}.

Definition 1.2.4. Transitive Closure: The transitive closure of a graph G = (V,E) is a graph
G′ = (V,E′) where E′ ⊇ E is the minimal superset of E such that ∀{u, v}, {v, w} ∈ E′ : {u,w} ∈ E′.

Definition 1.2.5. Connected Graph: A connected graph is a simple graph for which its transitive
closure is a complete graph.

Definition 1.2.6. Tree Graph: A tree graph or often simply tree is a connected graph G = (V,E)

such that |V | = |E| + 1. We call any vertices in the tree with degree 1 leaves and all other vertices
internal.

Definition 1.2.7. Path Graph: A path graph is a tree with at most two leaves. We call the leaves
the ends of the path graph.

3
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Definition 1.2.8. Spanning Subgraph: A spanning subgraph of a simple graph G = (V,E) is a
subgraph G′ = (V,E′) of G containing all vertices that appear in G.

Definition 1.2.9. Spanning Tree: A spanning tree of a connected graph G is a spanning subgraph
of G that is also a tree.

1.3 Geometric Intersection Graphs

Of course, graphs do not have to directly model a physical system such as roads or bridges, and in
general can represent much more complex systems. The study of graph theory therefore gives us
powerful tools for working with such an abstract model. However, sometimes we may find graphs
to be too general, making them able to represent structures that cannot exist in the systems we
are attempting to model, and so not allowing us to solve problems or determine properties of these
systems. By considering only classes of graphs that adhere to stricter rules, we can identify new
properties while still being able to create meaningful models of various systems. In particular we are
interested in the properties of various classes of intersection graphs.

Definition 1.3.1. Graph Isomorphism: Consider some pair of simple graphs G = (V,E) and G′ =

(V ′, E′). A graph isomorphism is a bijection f : V → V ′ such that {u, v} ∈ E ⇐⇒ {f(u), f(v)} ∈ E′.
We say G and G′ are isomorphic if and only if there exists such an isomorphism.

Definition 1.3.2. Intersection Relation: We say two sets intersect if their intersection is nonempty.
This corresponds to a binary relation ∋∈ = {(A,B) | A ∩ B = ∅}. This notation is derived from the
property that A ∋∈B ⇐⇒ ∃x : A ∋ x ∈ B.

Definition 1.3.3. Intersection Model: An intersection model of a graph G = (V,E) is a function f

that maps each vertex to some set such that ∀u, v ∈ V : f(u) ∋∈ f(v) ⇐⇒ {u, v} ∈ E. We say an
intersection model is an intersection model of some class of objects if its codomain is constrained to
that class. We say two intersection models are equivalent if and only if they are intersection models
of the same graph.

Definition 1.3.4. Intersection Graph: An intersection graph is a graph G for which an intersection
model exists. We say a graph is an intersection graph of some class of objects if there exists an
intersection model for that graph that is an intersection model of that class.

Intersection graphs are sufficiently general to represent any graph. For example, we can provide
an intersection model for any graph G = (V,E) by mapping every vertex to the set of edges incident
on that vertex: f(v) = {e ∈ E | v ∈ e}. For any pair of vertices u, v ∈ V their intersection under
this model f(u) ∩ f(v) is therefore the set containing just the edge {u, v} if and only if such an edge
exists in E, as is required of an intersection model. As a result, intersection graphs in general do
not have any properties that meaningfully distinguish them from general graphs. Rather, it is when
the intersection model is subject to some constraints that may result in the intersection graph having
useful properties. Of particular interest are the properties of intersection graphs constrained to various
classes of geometric objects.
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(a) A set of intervals. Shown vertically separated for clarity.
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(b) The intersection graph of the intervals.

Figure 1.2: An interval graph shown both as a set of intervals and their intersection graph.

Definition 1.3.5. Geometric Intersection Graph: A geometric intersection graph is an intersection
graph of some class of geometric objects.

Geometric intersection graphs are notable for two reasons. Firstly, it is common for them to appear
naturally as models in various applications depending on the geometry of the system in question.
Secondly, the properties that arise from these geometric objects can lead to optimisations that make
various problems tractable on geometric intersection graphs that are hard in general graphs. The
following sections present a taxonomy of a number of classes of geometric intersection graphs with
interesting properties relevant to this thesis.

1.3.1 Interval Graphs

Definition 1.3.6. Interval Graph: An interval graph is an intersection graph of intervals of the real
line. See Figure 1.2 for an example.

In general, the ends of an interval may be open, meaning the endpoint itself is not part of the
interval, or closed, meaning it is. In the case of interval graphs, however, since all that matters is
whether or not a pair of intervals intersect, there exists an equivalent interval intersection model in
which all intervals have distinct endpoints. Specifically, if any two intervals share an endpoint, it is
possible to offset the endpoint of one of the intervals by an infinitesimal amount without affecting
whether or not they intersect, and so we can separate all endpoints while maintaining the intervals
as a valid interval model of the graph. Without loss of generality we may therefore assume that no
intervals in the interval model of an interval graph share endpoints.

Therefore, if we denote the left endpoint of an interval x as l(x) and the right endpoint as r(x), we
find x∋∈y ⇐⇒ l(x) < r(y)∧l(y) < r(x) and the contrapositive x ∋∈ y ⇐⇒ r(x) < l(y)∨r(y) < l(y).

Interval graphs have applications including Very Large-Scale Integration (VLSI) circuit layout [26]
and fixed interval scheduling [35]. It is worth noting that we do not need to know the exact intervals
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(a) A set of arcs of a circle. Shown radially
separated for clarity.
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BC

D

E F

(b) The intersection graph of the arcs.

Figure 1.3: A circular-arc graph shown both as a set of arcs and their intersection graph.

corresponding to each vertex in order to reason about their intersection graph. An example of this is
the Berge Mystery, named after Claude Berge, to whom the original puzzle is commonly attributed
[21].

In the Berge Mystery, suspects in a theft testify as to which other suspects they saw at the scene of
the crime. If it is known that each suspect visited the location exactly once, and no two suspects were
present at the same time without one of them seeing the other, then their visits can be represented
as intervals in time and their testimony as intersections between intervals and must therefore form an
interval graph. Therefore if the graph formed by the suspects’ testimony is not an interval graph, one
of the suspects must have lied.

1.3.2 Circular-Arc Graphs

Definition 1.3.7. Circular-Arc Graph: A circular-arc graph is an intersection graph of arcs of a
common circle. See Figure 1.3 for an example.

Of particular note is the fact that all interval graphs are also circular-arc graphs, and so interval
graphs are a subclass of circular-arc graphs. As long as the relative order of their endpoints is
maintained, any interval model can be transformed to an equivalent intersection model of subintervals
of some finite interval. Projecting this finite interval onto the circumference of a circle allows us to
transform any interval model into an equivalent circular-arc model. This means that any property
that holds for all circular-arc graphs also holds for all interval graphs.

Conversely for any circular-arc graph with some point on the circle not covered by any arc, the
circle could be split at that point and mapped to a segment of the real line. Under this mapping all
arcs become intervals of the real line without changing their intersections, and so must also be an
equivalent interval intersection model.
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(a) A set of chords in a circle.
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EF

(b) The intersection graph of the
chords.

Figure 1.4: A circle graph shown both as a set of chords and their intersection graph.

Like interval graphs, circular-arc graphs have applications in VLSI layout and scheduling [28].
Notably, however, they are able to represent cyclic schedules where interval graphs cannot. Circular-
arc graphs also have applications in genetics and bioinformatics [28, 40].

1.3.3 Circle Graphs

Definition 1.3.8. Circle Graph: A circle graph is an intersection graph of chords inscribed in a
common circle. See Figure 1.4 for an example.

Circle graphs have numerous practical applications [50, 51]. They can be used to model layout
problems in VLSI design, including channel routing and switch-box routing [47]. Circle graphs can also
be used to solve problems relating to molecular structure in chemistry and bioinformatics. Bonsma
and Breuer [3] used circle graphs to enumerate benzenoid hydrocarbons and fullerenes. The possible
base pairings of nucleotides in ribonucleic acid (RNA) form a circle graph, which can be used to find
maximally bonded RNA secondary structures [42].

1.3.4 Polygon-Circle Graphs

Definition 1.3.9. Polygon-Circle Graph: A polygon-circle graph is an intersection graph of polygons
inscribed in a common circle. See Figure 1.5 for an example.

Polygon-circle graphs generalise a number of other intersection graph classes, including circle
graphs and circular-arc graphs [33]. In particular, they are the minimal superclass of circle graphs
that is closed under edge contraction [34], and so are useful when reasoning about connectivity between
components of a circle graph.
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(a) A set of polygons inscribed a circle.
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C D

(b) The intersection graph of the poly-
gons.

Figure 1.5: A polygon-circle graph shown both as a set of inscribed polygons and their intersection
graph.
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(a) A set of curves between parallel lines.
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(b) The intersection graph of the curves.

Figure 1.6: A co-comparability graph shown both as a set of curves between parallel lines and their
intersection graph.
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1.3.5 Co-comparability Graphs

Definition 1.3.10. Co-comparability Graph: A co-comparability graph is an intersection graph of
continuous curves from a line to a parallel line. See Figure 1.6 for an example.

Due to this intersection model, co-comparability graphs are also known as function graphs. Co-
comparability graphs are a superclass of permutation graphs, which are the intersection graphs of
line segments spanning between a pair of parallel lines. Despite having a geometric intersection
model, co-comparability graphs are more commonly known for their properties as the complements of
comparability graphs. This makes them useful as an analytical tool in proofs such as that presented
in Chapter 3.

Definition 1.3.11. k-subset: A k-subset of a set S is a subset of S of size k. The set of all k-subsets
of S is denoted

(
S
k

)
= {X ⊆ S | |X| = k}.

Definition 1.3.12. Graph Complement: The complement of a graph G = (V,E) is the graph
G = (V,E) where E =

(
V
2

)
\ E is the set of only those edges that do not appear in G and no others.

Definition 1.3.13. Comparability Graph: The comparability graph of a strict partially ordered set
(V,R) is the graph G = (V,E) where E = {{u, v} ∈

(
V
2

)
| (u, v) ∈ R∨ (v, u) ∈ R} is the set of all pairs

in V that are comparable using the relation R.

Lemma 1.3.1. (Golumbic, Rotem, and Urrutia [22]) The class of co-comparability graphs is exactly
the class of the complements of comparability graphs.

Janson and Kratochvıl [29] use a non-constructive, probabilistic method to show that neither
polygon-circle graphs nor co-comparability graphs contain the other as a subclass. This method is
based on analysing the evolution of various properties of the random graph Gn,p of n vertices with
connection probability p. The probability of Gn,p having some particular property varies with n and
p, but in particular, in the limit as n → ∞, small changes in p can result in drastic changes in this
probability. Janson and Kratochvıl combine a number of analytical results to find upper and lower
threshold functions for p for a number of properties. By showing for certain classes of intersection
graph that there are values of p for which the random graph must belong to one class but not the
other, they are able to show that the former is not a subclass of the latter. They present several results
including that neither polygon-circle graphs nor co-comparability graphs are a subclass of the other.

1.3.6 Interval Filament Graphs

Definition 1.3.14. Interval Filament [2]: Let l, r ∈ R, with l ≤ r. A (possibly self-intersecting)
curve C ⊂ R2 is an interval filament with endpoints l and r if:

• y ≥ 0 for all (x, y) ∈ C,

• (l, 0) ∈ C, (r, 0) ∈ C, and

• l ≤ x ≤ r for all (x, y) ∈ C.

See Figure 1.7a for some examples.
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(a) A set of interval filaments.
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(b) The intersection graph of the interval fil-
aments.

Figure 1.7: An interval filament graph shown both as a set of interval filaments and their intersection
graph.

Definition 1.3.15. Interval Filament Graph: An interval filament graph is an intersection graph of
interval filaments. See Figure 1.7 for an example.

Gavril [19] shows that both polygon-circle graphs and co-comparability graphs are subclasses of
interval filament graphs. Combining this with the result from Janson and Kratochvıl [29] mentioned
in Section 1.3.5 gives a proof that polygon-circle graphs and co-comparability graphs are proper
subclasses of interval filament graphs.

1.4 Problems of Interest

1.4.1 Recognition

As discussed in Section 1.3, graphs are interesting not only in their more general form, but also owing
to the properties that arise in various classes of graphs because of the defining properties of these
classes. Many other problems of interest in graphs may be easier to solve in such classes than in
general graphs, but in order to take advantage of this we must know whether or not a graph belongs
to the desired class. This is the recognition problem.

Definition 1.4.1. Recognition Problem: For some specified class of graphs, determine whether a
given graph belongs to that class. Note that since the graph classes we are interested in are closed
under vertex relabelling, the precise object used to represent any vertex cannot affect whether it
belongs to that class, and so membership of these classes is based solely on the adjacency structure of
the graph.

1.4.2 Intersection Representation

For some problems, it is not sufficient to know whether or not a graph belongs to a particular class
in order to benefit from the properties of that class. Rather, we may need to construct an explicit
representation of the graph under the constraints that define the class. Particularly in the case of
intersection graphs, this means finding an intersection model (see Definition 1.3.3) for the graph.
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Definition 1.4.2. Intersection Representation Problem: Given a class of intersection graphs and a
graph of that class, determine an intersection model of the given graph for the specified class.

Having a known intersection model allows us to use any properties of the given class of graph,
when this might not previously have been possible. In this way it can be more valuable to find an
intersection representation of a graph than simply to recognise it as belonging to a particular class of
intersection graphs.

In some cases we may wish to specify additional requirements for acceptable solutions to this
problem. Doing so depends on the properties of the particular class in question, and may make the
problem substantially more difficult. For example, the complexity of interval graph representation
varies drastically based on what additional constraints are supplied. With no additional constraints,
it is possible to find a representation of an interval graph in linear time O(|V | + |E|). The problem
becomes NP-complete if each interval in the representation is required to be a specific length. However,
if we are also given the required length of the intersections of each pair of intervals, the problem can
once again be solved in O(|V |+ |E|) [31].

1.4.3 Subclass Relation

A class of graphs is a subclass of another class if and only if all graphs that are members of the former
class are also members of the latter. This property is useful to know, as any property that holds for
the superclass must also hold for the subclass.

1.4.4 Shortest Path

It can be useful to associate additional information with the elements of a graph, rather than simply
their presence or absence. In general we could use some function to associate this information (typically
called a label) with each vertex or edge. There are many applications in which it is useful to associate
some numeric value with each edge. This value is typically referred to as a weight, and can be used
to represent quantities such as cost or length.

Definition 1.4.3. Weighted Graph: A weighted graph is some graph G with edges E and an
associated weight function w : E →W where W is some numeric space.

In systems which can be modelled as graphs, it is not always the case that we are restricted to
only make use of single edges in the graph, but rather we may wish to reason about the transitive
connectivity of the graph. We can extend the concept of weight to transitive connectivity by combining
the weights of multiple edges.

Definition 1.4.4. Path: A path in a simple graph G = (V,E) is a subgraph of G that is a path
graph. We say a path goes from one end of the path to the other. The length of a path in a weighted
graph is the sum of the weights of all edges in the path. In an unweighted graph it is simply the
number of edges in the path, as though every edge in the graph were given a weight of 1. Paths may
also be specified as a sequence of vertices π = ⟨v1, v2, . . . , vn⟩ with edges assumed to exist between
each adjacent pair of vertices in the sequence {v1, v2}, {v2, v3}, . . . , {vn−1, vn}.

11
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We often encounter optimisation problems that can be modelled as finding a path with minimum
possible length. This gives rise to a family of shortest path optimisation problems.

Definition 1.4.5. Shortest Path: Given a graph G with vertices V and a pair of vertices u, v ∈ V a
shortest path from u to v is a path with minimum length out of all possible paths from u to v. Note
there may be multiple such shortest paths. The shortest path problem is solved by determining one
such shortest path given G, u, and v. Sometimes this problem may be stated as simply finding the
length of such a shortest path and not necessarily the path itself.

Definition 1.4.6. Single-Source Shortest Paths: Given a graph G with vertices V and a vertex
u ∈ V , the single-source shortest paths problem is solved by finding a shortest path from u to each
other vertex in V , or in some cases simply the lengths of these paths.

Definition 1.4.7. All-Pairs Shortest Paths: Given a graph G with vertices V the all-pairs shortest
paths problem is solved by finding a shortest path between every pair of vertices u, v ∈ V, u = v, or in
some cases simply the lengths of these paths.

There are many famous solutions to these problems including Dijkstra’s algorithm [12] and the
Floyd-Warshall algorithm [14] for all-pairs shortest path lengths [10].

1.4.5 MinAPL

Since many optimisation problems can be solved using the shortest path problem, the average length
of all shortest paths in a graph can be a useful metric for comparing graphs against each other in
these contexts. Indeed, the average path length in a graph gives us the expected value for the length
of the shortest path between a uniformly randomly sampled pair of vertices.

Definition 1.4.8. Average Path Length: The average path length of a graph G is the average of all
the lengths in the all-pairs shortest paths of G.

In cases where we have some amount of agency to modify the system, we can use this to attempt
to improve the average path length.

Definition 1.4.9. Average Path Length Minimisation: The Average Path Length Minimisation
(MinAPL) problem is to find, given a graph G = (V,E) and a set of candidate edges S ⊆ {{u, v} |
u, v ∈ V, u = v} \ E, the edge e in S that, when inserted into G to give G′ = (V,E ∪ {e}), results
in G′ having the lowest average path length possible out of all candidates. Note that there may be
multiple such edges. In the case of a weighted graph the weight function w must also be defined for
all candidate edges in S.

1.4.6 Maximum Internal Spanning Tree

Spanning trees are often useful when optimising infrastructure, as they are the minimum subgraphs
that span every vertex in a graph, and removing any edge from a spanning tree would cause it
to become disconnected. A particular example of this is the problem of optimising communication
networks by finding a spanning tree with the minimum possible number of leaves [46]. Conventionally
this is referred to as the maximum internal spanning tree problem, as maximising the number of
internal vertices in a spanning tree is equivalent to minimising the number of leaves.
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Definition 1.4.10. Maximum Internal Spanning Tree: A maximum internal spanning tree (MIST)
of a connected graph G is any spanning tree of G for which no other spanning tree has a greater
number of internal vertices. The maximum internal spanning tree problem is to, given G, find a MIST
of G.

The maximum internal spanning tree problem generalises the Hamiltonian path problem, since if
a Hamiltonian path exists, it must also be the MIST, as it would not be possible to have fewer leaves
than a path.

Definition 1.4.11. Hamiltonian Path: A Hamiltonian path in a graph G is any path that is also a
spanning subgraph of G. The Hamiltonian path problem is to, given G, find a Hamiltonian path in
G, if one exists.
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Chapter 2

Polygon-Circle Graph Recognition and
Representation

2.1 Introduction

This chapter covers the recognition (see Section 1.4.1) and representation (see Section 1.4.2) problems
for polygon-circle graphs (see Section 1.3.4).

Polygon-circle graphs are useful as a generalisation of a number of other intersection graph classes,
including circle graphs and circular-arc graphs, and are a subclass of interval filament graphs [19]. In
particular, they are the minimal superclass of circle graphs that is closed under edge contraction. A
number of optimisation problems in these graph classes have polynomial-time algorithms only if the
intersection representation of the graph is already known [6, 7, 8, 50, 51], so it is valuable to be able
to recognise when a graph is a polygon-circle graph and construct an intersection representation of
the graph.

Several polynomial-time recognition algorithms exist for circle graphs [48, 20]. Koebe published
a sketch of a polynomial-time recognition algorithm for polygon-circle graphs (using the alternative
term of “spider graph”), though this sketch was later found to contain errors, and no completed
algorithm was ever published [32, 33]. Pergel [43] shows that recognition of both polygon-circle and
interval filament graphs is NP-complete by reduction from the Not-All-Equal Satisfiability (NAE-SAT)
problem, but does not explicitly provide an algorithm for recognising polygon-circle graphs. Given how
otherwise similar polygon-circle graphs are to circle graphs, it is interesting that polygon-circle graph
recognition is NP-complete when circle graph recognition is possible in polynomial time. Despite this
problem plainly having been a matter of some interest for some time, I am not aware of any existing
polygon-circle graph recognition algorithm that is faster than brute-force enumeration of alternating
sequences (see Sections 2.2 and 2.3).

This chapter will explore algorithms for polygon-circle graph recognition and representation and
compare their theoretical and practical performance. In particular the novel algorithms presented in
Sections 2.4 and 2.5, while still having exponential time complexities, are superexponentially faster
than the brute force.
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2. POLYGON-CIRCLE GRAPH RECOGNITION AND REPRESENTATION

2.2 Alternating Sequence Representation

Under the purely geometric interpretation of polygon-circle graphs, there are infinitely many equivalent
geometric representations, because polygon vertices can move freely on the circle and, so long as
their order around the circle remains the same, the intersection relation on the polygons will not
change. In order to simplify working with polygon-circle graphs, we will exploit this property to
define an equivalent non-geometric representation. This is the alternating sequence representation
first presented by Bouchet [4]. A graph is a polygon-circle graph if and only if it has an alternating
sequence representation [43].

Definition 2.2.1. Alternating Sequence: An alternating sequence is a representation of a simple
graph G = (V,E) as a sequence S = S1 . . . Sm of symbols taken from V = {v1, . . . , vn} such that
(uvuv | S) ∨ (vuvu | S) ⇐⇒ {u, v} ∈ E. The notation S ′ | S means S contains S ′ as a subsequence
(and S ′ ∤ S means it does not).

Note that any rotation or reversal of such an alternating sequence is an equivalent representation, as
the subsequences uvuv and vuvu are each others rotations and reversals, and so the represented edges
will not change under rotation or reversal. For a disconnected graph, each connected component of the
graph need not intersect each other at all, and so the overall sequence can simply be the concatenation
of the representation of each component. As such, and without loss of generality, we need consider
only connected graphs.

As an example, the polygon-circle graph shown in Figure 2.1a can be represented by the alternat-
ing sequence ABACCDABBDCCB, corresponding to the counter-clockwise order in which vertices
appear on the circle as demonstrated in Figure 2.1b. Rotating the sequence corresponds to changing
the starting point of the sequence on the circle. Note that other alternating sequence representations
for this graph exist.

Recognising polygon-circle graphs is thereby reduced to determining whether there exists an alter-
nating sequence that encodes the given graph. Note that the number of occurrences of a symbol in an
alternating sequence corresponds to the number of vertices that polygon has, meaning circle graphs
can be represented by an alternating sequence where each symbol occurs exactly twice.

Neither of the subsequence patterns corresponding to edges given in Definition 2.2.1 require the
same symbol to be repeated twice in immediate succession. As a result, if the same symbol ever
appears twice in succession in an alternating sequence, one of the occurrences can be removed without
affecting the graph represented by the sequence. We may therefore assume without loss of generality
that no alternating sequence ever has the same symbol appear twice in a row. By the same reasoning,
we may also therefore assume that no alternating sequence starts and ends with the same symbol,
which follows intuitively from the above observation and the fact that rotating the circle to change
where we start the sequence does not affect the intersection relation of the polygons.

Lemma 2.2.1. (Kratochvıl and Pergel [36]) For any polygon-circle graph G = (V,E) and any vertex
v ∈ V with degree d(v), v need only appear at least twice and at most max(2, d(v)) times in the
alternating sequence.
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(a) A set of polygons inscribed in a circle — the intersection representation of a polygon-circle graph.

A A AB B B BC C C CD D

(b) The straightened circle showing the relationship between the inscribed polygons and their alternating se-
quence representation ABACCDABBDCCB. This example sequence is read in counter-clockwise order start-
ing from the rightmost point of the circle, but the choice of direction and cut point are arbitrary.

Figure 2.1: A polygon-circle graph shown both as a set of inscribed polygons and their corresponding
alternating sequence.
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2. POLYGON-CIRCLE GRAPH RECOGNITION AND REPRESENTATION

Observation 2.2.2. For any polygon-circle graph G = (V,E), a minimum-length alternating sequence
representation of G need be at most 2|E| + |L| in length where L = {v ∈ V | d(v) = 1} is the set of
leaves of G.

Proof. The length of the alternating sequence representation is the sum of the number of times each
vertex appears in the sequence. By Lemma 2.2.1, each vertex with degree d(v) need only appear at
least twice and at most max(2, d(v)) times in the alternating sequence. Since the graph is connected,
every vertex must have d(v) ≥ 1, and therefore the the only vertices that must appear more than
d(v) times will be the leaves, which will appear exactly 2 = d(v) + 1 times, and all others will need
to appear at most d(v) times. Therefore the minimum required length for an alternating sequence
representation of G is given by the sum

∑
v∈V \L d(v) +

∑
v∈L(d(v) + 1). Grouping the d(v) terms

into the same sum gives
∑

v∈V d(v) +
∑

v∈L 1. Since each edge counts towards the degree of exactly
two vertices, the sum of degrees across all vertices will be exactly 2|E|. Therefore the length of the
alternating sequence needs be at most

∑
v∈V d(v) +

∑
v∈L 1 = 2|E|+ |L|, as desired.

2.3 Brute Force

The alternating sequence representation implies a brute-force algorithm for polygon-circle graph recog-
nition and representation. We need simply to enumerate all possible alternating sequences for the
vertices of the given graph and test each sequence to see if it represents exactly the edge set of the
given graph. We can enumerate these sequences by constructing the lexicographically minimal se-
quence containing each symbol the appropriate number of times based on the degree of that vertex
and then iterate through all distinct permutations of this sequence in lexicographic order using a
classical method [30].

As per Lemma 2.2.1, let n : V → N≥0 be the number of times a vertex appears in the sequence
where n(v) = 2 when the degree d(v) of v is 1 and n(v) = d(v) otherwise. The total length of the
sequence is then N =

∑
v∈V n(v). The number P of distinct permutations of this sequence can be

found by dividing out the number of permutations of each symbol from the number of permutations of
the whole sequence P = N !/

∏
v∈V n(v)!. For any particular N , P is maximised when all vertices have

n-values that differ by at most 1 from each other. If this were not the case, and a pair of vertices u and v

existed such that n(u)+1 < n(v), then we could increase n(u) by 1 and decrease n(v) by 1. This would
result in a total proportional change in the denominator of P ,

∏
v∈V n(v)!, of (n(u)+1)/n(v), which is

guaranteed to be less than 1 and hence increase P . Assuming then that in the worst case every vertex
has some common degree d > 1, P has an upper bound given by N !/d!|V | where N = |V |d = 2|E|.
Even with the factorial term in the denominator, this grows superexponentially as d increases, and is
bounded by the limit d < |V |, giving a worst case upper bound for P of (|V |2 − |V |)!/(|V | − 1)!|V |

when N = |V |(|V | − 1) = |V |2 − |V |.
Naively, an alternating sequence can be checked in O(|V |2N) time by iterating over the sequence

to test for the presence or absence of each edge pattern as a subsequence of the alternating sequence as
required. Doing this for each candidate alternating sequence gives a time complexity of O(|V |2NP ),
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which in full gives the worst case time complexity:

O

(
|V |2(|V |2 − |V |)(|V |2 − |V |)!

(|V | − 1)!|V |

)
To the best of my knowledge, this algorithm was the best known prior to my development of the
algorithms presented in Sections 2.4 and 2.5.

2.4 Dynamic Programming

Lemma 2.4.1. S is an alternating sequence representation of G = (V,E) if and only if (uvu |
S) ∧ (vuv | S) ⇐⇒ {u, v} ∈ E.

Proof. By Definition 2.2.1, S is an alternating sequence representation of G if and only if (uvuv |
S) ∨ (vuvu | S) ⇐⇒ {u, v} ∈ E. We therefore aim to show that (uvu | S) ∧ (vuv | S) ⇐⇒ (uvuv |
S) ∨ (vuvu | S) by considering the conditional in either direction.

To show (uvu | S)∧ (vuv | S) =⇒ (uvuv | S)∨ (vuvu | S), first consider that any S that satisfies
the left hand side must contain at least two us as a result of uvu | S and at least two vs as a result of
vuv | S. We can explicitly enumerate all distinct possible orderings of these symbols as follows: uuvv,
uvuv, uvvu, vuuv, vuvu, vvuu. The only two of these options that satisfy the left hand side are uvuv

and vuvu, and hence at least one of them must also be a subsequence of S, giving us the right hand
side (uvuv | S) ∨ (vuvu | S) as desired.

To show (uvuv | S) ∨ (vuvu | S) =⇒ (uvu | S) ∧ (vuv | S) we can simply consider both the
cases that uvuv | S and that vuvu | S. If uvuv | S, we see that uvu | uvuv and that vuv | uvuv. If
vuvu | S, we see that uvu | vuvu and that vuv | vuvu. Therefore in either case uvu | S and vuv | S
as desired.

By Lemma 2.4.1, in order to determine if a sequence S is an alternating sequence representation
of a graph G = (V,E), it suffices to show that ∀{u, v} ∈ E : (uvu | S) ∧ (vuv | S) and conversely
that ∀{u, v} /∈ E : (uvu ∤ S) ∨ (vuv ∤ S). To test for the presence of any single subsequence of the
form uvu we can simply scan linearly over the sequence, keeping track of how long a prefix of the
subsequence we have so far encountered, starting from 0. Finding a prefix of length 3 indicates that
the subsequence does appear in the sequence. Keeping track of such a prefix length for every sequence
of the form uvu for all u, v ∈ V allows us to test if this alternating sequence is a valid representation
of a given graph, as for all {u, v} ∈ E, both uvu and vuv must have a prefix length of 3, while for all
{u, v} /∈ E, at least one of the two must have length less than 3. This allows us to check a candidate
alternating sequence of length N in O(|V |N) time, because for each symbol in the sequence we must
check and potentially update the length of all O(|V |) pairs in which that symbol appears.

While we could use this technique to enumerate and test all possible alternating sequences, like
the brute force this is dominated by the number of sequences that need to be checked and is super-
exponential. Instead, if we analyse the state used in this algorithm, we find that we only need to
keep track of a prefix length from 0 to 3 for each pair and how many characters into the sequence
we are. As there are |V |(|V | − 1) = |V |2 − |V | distinct ordered pairs, this gives us an upper bound
on the number of possible states of 4|V |2−|V |N where N is the sequence length, which is bounded by
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2. POLYGON-CIRCLE GRAPH RECOGNITION AND REPRESENTATION

O(|E|), as above. At any state there are |V | possible symbols that could come next, and for each
the resulting next state can be found in O(|V |) by updating the prefix lengths in which that symbol
appears. Memoising which states are able to reach a base case where the requirements for the graph
in question are satisfied gives us a dynamic programming based solution with O(4|V |2−|V |N) states
and an O(|V |2) recurrence for an overall time complexity of O(4|V |2−|V |N |V |2). Given N cannot ex-
ceed |V |2, this algorithm has an upper bound on time complexity of O(4|V |2−|V ||V |4) and naively a
memory complexity of O(4|V |2−|V ||V |2) states. However, since part of the state is the current length
of the sequence, and a state can only depend on the immediate next length, we can evaluate states
in order by length and thereby discard old states that we will never again depend on. By keeping
only states corresponding to the current and previous lengths, this reduces the memory complexity to
O(4|V |2−|V |).

If this dynamic programming approach finds the given graph to be a polygon-circle graph, we can
use standard techniques to trace back the choices made by the algorithm at each state to construct a
valid alternating sequence representation of the given graph, and hence an intersection representation.
This technique requires us to maintain all states, however, and so is incompatible with the memory
reduction technique from above.

2.5 Recognition Automata

2.5.1 Deterministic Finite Automata

The alternating sequence representation also suggests another approach to the recognition and rep-
resentation problems. Since we are now working with sequences, we can employ a well understood
mathematical tool for working with such sequences: Deterministic Finite Automata (DFAs). We aim,
therefore, to construct a DFA that accepts any sequence that is an alternating sequence for the given
graph, and rejects all others.

Definition 2.5.1. Deterministic Finite Automaton: A deterministic finite automaton can be defined
by a tuple (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite alphabet of symbols, δ :

Q × Σ → Q is a transition function, q0 is some initial state, and F ⊆ Q is a set of accepting states.
A deterministic finite automaton M = (Q,Σ, δ, q0, F ) accepts a sequence S = S1 . . . Sm if and only if
there exists a sequence of states R0 . . . Rm such that R0 = q0, Ri = δ(Ri−1, Si), and Rm ∈ F .

It is also possible to combine DFAs in various ways to construct a new DFA. For example (and of
relevance later), we can define the conjunction of a pair of DFAs to be a new DFA that accepts only
those sequences that both original DFAs would accept, and rejects all others.
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q0start q1 q2 q3
u

V \ {u}

v

V \ {v}

u

V \ {u} V

Figure 2.2: A DFA that accepts any sequence containing the subsequence uvu.

Definition 2.5.2. DFA Conjunction: Given a pair of DFAs ML = (QL,ΣL, δL, q0L, FL) and MR =

(QR,ΣR, δR, q0R, FR), their conjunction is a DFA ML ∧MR = (Q,Σ, δ, q0, F ) where:

Q = QL ×QR

Σ = ΣL ∩ ΣR

δ((qL, qR), s) = (δL(qL, s), δR(qR, s))

q0 = (q0L, q0R)

F = FL × FR

This is equivalent to running both original automata in parallel, and will accept a sequence if and
only if that sequence would be accepted by both ML and MR.

Similar constructions are possible for other logical operations. The disjunction of a pair of DFAs
can be constructed in the much the same way as their conjunction, but instead we accept any state
that would have been accepted by at least one of the original automata F = FL×QR ∪QL×FR. The
negation of a DFA is simply the same automaton with the set of accepting states inverted F ′ = Q\F .

2.5.2 Automaton Structure

As in Section 2.4, by Lemma 2.4.1, in order to determine if a sequence S is an alternating sequence
representation of a graph G = (V,E), it suffices to show that ∀{u, v} ∈ E : (uvu | S) ∧ (vuv | S) and
conversely that ∀{u, v} /∈ E : (uvu ∤ S) ∨ (vuv ∤ S). We can construct a DFA h(u, v) to accept any
sequence containing the subsequence uvu as

h(u, v) = ({q0, q1, q2, q3}, V, δ, q0, {q3}) (2.1)

where δ(q0, u) = q1, δ(q1, v) = q2, δ(q2, u) = q3, and δ(q, s) = q otherwise. This automaton is
represented graphically in Figure 2.2. For a sequence to contain an alternation of u and v we therefore
require that it is accepted by both h(u, v) and h(v, u), and so we can define the conjunction automaton
e(u, v) = h(u, v) ∧ h(v, u), which will accept a sequence if and only if it contains an alternation of u
and v.

This is not sufficient on its own, however, as this only enforces the existence of edges, and does
not disallow the existence of edges that are not in E. To this end, we can construct a DFA h̄(u, v)

that accepts any sequence that does not contain the alternation uvuv:

h̄(u, v) = ({q0, q1, q2, q3, q4}, V, δ, q0, {q0, q1, q2, q3}) (2.2)
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2. POLYGON-CIRCLE GRAPH RECOGNITION AND REPRESENTATION

q0start q1 q2 q3 q4
u

V \ {u}

v

V \ {v}

u

V \ {u}

v

V \ {v} V

Figure 2.3: A DFA that accepts any sequence that does not contain the subsequence uvuv.

where δ(q0, u) = q1, δ(q1, v) = q2, δ(q2, u) = q3, δ(q3, u) = q4, and δ(q, s) = q otherwise. This
automaton is represented graphically in Figure 2.3. We can then define the automaton ē(u, v) =

h̄(u, v)∧ h̄(v, u), which will accept a sequence if and only if it does not contain an alternation of u and
v.

Alternative constructions exist, but this formulation is convenient since it requires only conjunction
to construct. Using these alternation recognition automata, we can now construct a DFA that will
accept any sequence that is an alternating sequence for some graph G = (V,E):

r(G) =

 ∧
{u,v}∈E

e(u, v)

 ∧
 ∧

{u,v}∈E

ē(u, v)

 (2.3)

where E =
(
V
2

)
\E is the complement of the edge set, as in Definition 1.3.12. A graph G is a polygon-

circle graph if and only if there exists a sequence that is accepted by r(G), and which is therefore an
alternating sequence of G.

We can find an upper bound on the number of states in the final recognition automaton by
multiplying together the number of states in each of its component DFAs. In the worst case, all |V |2−
|V | components have 5 states, giving an upper bound of O(5|V |2−|V |) states for the final recognition
automaton (though we will show we can reduce this bound in Section 2.5.3).

The recognition problem therefore is to determine if there exists any sequence that is accepted
by r(G), and the representation problem to construct any such sequence. Given the recognition
automaton, both of these can be accomplished by doing a depth-first search of the automaton to find
if there is a reachable accepting state from the initial state and the corresponding sequence. Such a
search can be done in O(|V |N) time, where N is the number of states in the automaton, since each
state has at most |V | outgoing edges. The automaton can also be used to enumerate all alternating
sequences of G by performing a backtracking search.

2.5.3 Construction Algorithm

We now aim to construct the recognition automaton (or equivalent) as efficiently as possible.

Definition 2.5.3. DFA Equivalence: A pair of DFAs ML,MR are considered equivalent if and only
if all sequences accepted by ML are also accepted by MR, and all sequences accepted by MR are also
accepted by ML.

We begin by observing that the DFAs defined in Equations (2.1) and (2.2) are pseudocyclic, and
that pseudocyclic DFAs are closed under conjunction.
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Definition 2.5.4. Pseudocyclic DFA: A DFA is pseudocyclic if it contains no cycles other than
self-loops. More formally, a DFA is pseudocyclic if and only if there is no sequence that will cause it
to return to a state it has previously left.

Lemma 2.5.1. The conjunction of a pair of pseudocyclic DFAs is itself pseudocyclic.

Proof. Given a pair of pseudocyclic DFAs ML and MR, we aim to show that their conjunction M =

ML ∧MR is pseudocyclic. This follows intuitively from Definitions 2.5.2 and 2.5.4, since for there to
be a transition loop from some state (qL, qR) to itself (possibly through intermediate states), there
must exist a transition loop from qL to itself in ML, and from qR to itself in MR. Since both ML and
MR are pseudocyclic, these loops can only exist as self-loops, meaning that the loop must simply be
a direct transition from (qL, qR) to itself, as if either the ML or MR moved to a different state, they
would be unable to return. This is by definition a self-loop, meaning that any loop in M must be a
self-loop, and hence M is pseudocyclic.

It follows that the conjunction of any set of pseudocyclic DFAs is also pseudocyclic, and hence that
the recognition automaton from Equation (2.3) is pseudocyclic, as are all intermediate DFAs used in
its construction.

If we construct such an automaton naively, we would expect its size to grow exponentially, as the
number of states in the conjunction of two DFAs is the product of the numbers of states in each. This
gives us a conservative upper bound on the number of states of O(5|V |2−|V |), since in the worst case
we may construct a 5-state DFA as in Equation (2.2) for each ordered pair of vertices. This number of
states quickly becomes intractably large, even for small graphs. To make this problem more feasible,
we aim instead to construct an equivalent but smaller DFA.

To this end we exploit some properties of pseudocyclic DFAs to efficiently compute the minimal
equivalent DFA. In general DFAs, this is typically done using Hopcroft’s O(n log n) algorithm [27],
but Revuz and Bubenzer give linear-time algorithms for acyclic DFAs [44, 5]. These algorithms can
be adapted to work with pseudocyclic DFAs, if self-loops are treated as equivalent to a transition
to a behaviourally equivalent state. The optimal construction for e(u, v) given by this minimisation
process is shown in Figure 2.4. The optimal construction for ē(u, v) is simply the complement of the
same, as shown in Figure 2.5. Both of these have a total of 8 states, but we only require one per
unordered pair of vertices instead of one per ordered pair, giving a new upper bound on number of
states in a recognition automaton of O(8(|V |2−|V |)/2) ∼ O(

√
8
|V |2−|V |

) even if no further optimisations
are possible. While still exponential, this is a substantial improvement over the complexity of the
dynamic programming approach presented in Section 2.4.

An implementation of this recognition algorithm that performs minimisation in the same pass as it
performs conjunction is available online at https://github.com/gozzarda/pcg_dfa [24]. It is worth
noting that the order in which the conjunctions are performed can have a significant effect on the size
of intermediate DFAs, and hence overall computation time, since it is possible for an intermediate
DFA to have many more states than the final result.

We can find a worst-case upper bound on time complexity for this algorithm by assuming we
produce an automaton with the maximum number of states (O(

√
8
|V |2−|V |

), as above) and by observing
that each state may have been involved in a maximum of |V |2 conjunctions, for an overall exponential
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Figure 2.4: A DFA that accepts any sequence containing an alternation of u and v.
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Figure 2.5: A DFA that accepts any sequence that does not contain an alternation of u and v.
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upper bound of O(
√
8
|V |2−|V ||V |2). Performing the conjunctions in different orders can reduce the

|V |2 term to |V | or even log(|V |), but might come at the cost of drastically increasing the size of
intermediate automata. The worst-case memory complexity of this algorithm is dominated by the
automata produced, and therefore has an upper bound of O(

√
8
|V |2−|V |

). In practice, the computation
time for this algorithm is dominated by intermediate automaton size, which is often much less than
in the worst case, meaning this algorithm performs far better than the given upper bound on time
complexity suggests.

Theorem 2.5.2. Polygon-circle graphs can be recognised in O(
√
8
|V |2−|V ||V |2) time.

This novel algorithm provides a substantial improvement over the time complexity of the brute-
force approach presented in Section 2.3, and both the time and memory complexity of the dynamic
programming approach presented in Section 2.4.

2.5.4 Empirical Analysis

To demonstrate its performance in practice, we apply this recognition algorithm to the question of
identifying the smallest non-polygon-circle graph.

Theorem 2.5.3. The smallest non-polygon circle graph is the 3-prism (see Figure 3.1a).

Proof. By exhaustively enumerating all graphs of up to seven vertices, and running this recognition
algorithm on each, we found that all graphs of up to five vertices are polygon-circle graphs, and that
the 3-prism is the only 6-vertex graph that is not a polygon-circle graph.

Furthermore, we found that all 7-vertex non-polygon-circle graphs contain the 3-prism as an in-
duced subgraph. This algorithm was able to find an alternating sequence representation (or that none
exists) for all 853 pairwise nonisomorphic connected graphs on 7 vertices in under 85 seconds on an
Intel Core i7-6700K processor.

The execution time of this technique is highly data-dependent, and it has proved difficult to find a
tight asymptotic bound on runtime. Empirical analysis of the time taken to construct the recognition
automata for a random sample of connected graphs and the number of states in these automata shows
a strong exponential trend in the size of the graph (Figures 2.6 and 2.7). Note that the outliers in
Figure 2.7 will be the few randomly selected graphs that happen to not be polygon-circle graphs and
hence the final automaton contains a single state and simply rejects all sequences.

The memory requirements for this algorithm appear to grow rapidly with the density of the graph
in question. Note that of course any complete graph can be trivially shown to be a polygon-circle
graph without the use of this algorithm. This algorithm handled a number of randomly generated 50%
density graphs of up to 12 vertices without exhausting the 32 GiB of RAM in my workstation. By
comparison, the dynamic programming approach presented in Section 2.4 would require an estimated
4.7 × 1021 states for even a 6-vertex graph, making its memory usage infeasible for any graph that
could possibly not be a polygon-circle graph.

Overall this algorithm represents a significant improvement over the alternative methods presented
in Sections 2.3 and 2.4, as it is practical for sizes of graph for which other approaches would require
either infeasible amounts of time or infeasible amounts of memory.
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Figure 2.6: Runtime to construct recognition automata for 300 randomly generated connected graphs.
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Figure 2.7: Number of states |Q| in recognition automata for 300 randomly generated connected
graphs.
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Chapter 3

A Constructive Proof that
Polygon-Circle Graphs are Not
Equivalent to Interval Filament Graphs

3.1 Introduction

This chapter covers analysis and proof of the subclass relationship (see Section 1.4.3) between polygon-
circle graphs (Section 1.3.4) and interval filament graphs (Section 1.3.6). Understanding the relation-
ship between such graph classes is important to solving problems in the various classes and proving
the correctness of these solutions.

When Gavril first introduced interval filament graphs, they also provided a straightforward proof
that polygon-circle graphs are a subclass of interval filament graphs [19]. To show that polygon-circle
graphs are a proper subclass of interval filament graphs, they first show that co-comparability graphs
are also a subclass of interval filament graphs, and then cite a result from Janson and Kratochvıl [29]
that polygon-circle graphs and co-comparability graphs are not equivalent. From this it follows that
both polygon-circle graphs and co-comparability graphs must be proper subclasses of interval filament
graphs, as there must exist a co-comparability graph that is not a polygon-circle graph, but is an
interval filament graph, and there must exist a polygon-circle graph that is not a co-comparability
graph, but is an interval filament graph.

However, to show that polygon-circle graphs and co-comparability graphs are not equivalent, Jan-
son and Kratochvıl [29] use a highly involved probabilistic proof method as discussed in Section 1.3.5.
This proof method is non-constructive, however, and so does not produce an explicit counterexam-
ple to prove that polygon-circle graphs are not equivalent to co-comparability graphs. Following on
from the result in Section 2.5.4 that shows by complete search that the 3-prism (see Figure 3.1a)
is the minimal non-polygon-circle graph we can develop a constructive proof that this graph is not
a polygon-circle graph. Combined with a proof that the 3-prism is a co-comparability graph, this
amounts to a proof that polygon-circle graphs and co-comparability graphs are not equivalent. This,
therefore, also serves as a proof that the class of polygon-circle graphs is a proper subclass of the class
of interval filament graphs.
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3. A CONSTRUCTIVE PROOF THAT POLYGON-CIRCLE GRAPHS ARE NOT
EQUIVALENT TO INTERVAL FILAMENT GRAPHS
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(a) The 3-prism.

A

FB

D

C E

(b) The complement of the 3-prism — the
6-cycle.

Figure 3.1: The 3-prism and its complement.

Definition 3.1.1. Cycle Graph: A cycle graph is an undirected graph containing only a single cycle
through all vertices and no other edges. More specifically, the k-cycle, denoted Ck, is a cycle graph
containing k vertices.

Definition 3.1.2. Prism Graph: A prism graph is an undirected graph corresponding to the skeleton
of a prism. More specifically, the k-prism, denoted Πk, is a prism graph containing 2k vertices in the
form of a pair of k-cycles where there is an edge between corresponding vertices in the two cycles.
This can be more formally defined as the graph Cartesian product of the complete graph of order 2,
K2, and the k-cycle, Ck.

3.2 Proof that the 3-prism is a Co-comparability Graph

Lemma 3.2.1. The complement of the 3-prism Π3 is the 6-cycle C6.

Proof. A diagram of the 3-prism Π3 = (V,E) per Definition 3.1.2 is given in Figure 3.1a. By Defini-
tion 1.3.12, the complement of this is the graph Π3 = (V,E) where E =

(
V
2

)
\E. Thus the complement

of this graph is shown in Figure 3.1b. The complement consists of a single cycle through all 6 vertices
and no other edges, and so by Definition 3.1.1 is the 6-cycle C6 = Π3.

Lemma 3.2.2. The 6-cycle C6 is a comparability graph.

Proof. Consider the strict partially ordered set (V,R) where:

V = {A,B,C,D,E, F}

R = {(A,E), (A,F ), (B,D), (B,F ), (C,D), (C,E)}

By Definition 1.3.13, the comparability graph of a strict partially ordered set (V,R) is the graph (V,E)

where E is the set of all unordered pairs in V that are comparable using the relation R. For the given
strict partially ordered set, this corresponds to the 6-cycle as shown in Figure 3.1b.

Lemma 3.2.3. The 3-prism Π3 is a co-comparability graph.
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Proof. By Lemma 3.2.1 and Lemma 3.2.2, the complement of the 3-prism is a comparability graph,
the 6-cycle. By Lemma 1.3.1, the 3-prism is therefore a co-comparability graph.

Alternatively, we can show that the 3-prism is a co-comparability graph by constructing an appro-
priate intersection representation. Such an intersection representation is given in Figure 1.6.

3.3 A Constructive Proof that the 3-Prism is Not a Polygon-Circle
Graph

Definition 3.3.1. Star Graph: A star graph is an undirected graph wherein there is a single vertex
that has an edge to all other vertices, which each have degree exactly 1. More specifically, the k-star,
denoted K1,k−1, is a star graph containing k vertices.

Definition 3.3.2. Vertex Cut Set: A vertex cut set is a subset of the vertices of a graph which, when
removed (along with any incident edges), increases the number of connected components in the graph.
In a connected graph, this disconnects the graph.

Definition 3.3.3. Star Cut Set: A star cut set is a vertex cut set that has an induced subgraph that
is a star graph.

Definition 3.3.4. Articulation Vertex: An articulation vertex is any vertex in a graph that forms a
vertex cut set by itself.

Definition 3.3.5. Universal Vertex: A universal vertex of a graph is a vertex that is adjacent to
every other vertex in the graph.

Lemma 3.3.1. No cycle graph contains an articulation vertex.

Proof. Removing any single vertex from a cycle graph results in a path graph. As a path graph is still
connected, that vertex cannot have been a vertex cut set, and so cannot have been an articulation
vertex.

Lemma 3.3.2. No prism graph contains a star cut set.

Proof. First, note that prism graphs have enough symmetry that all vertices are equivalent, so we can
consider some arbitrary vertex v and hence need only to show that it cannot be the centre of a star
cut set. Each vertex in a prism graph can be considered as belonging to one cycle and having exactly
one neighbour in the other cycle. Let us refer to the cycle to which v belongs as the inner cycle, and
to the other as the outer cycle. It follows that a star centred on v may contain at most one vertex
in the outer cycle. Since no cycle graph contains an articulation vertex (Lemma 3.3.1), regardless
of whether or not the outer vertex is part of the star, the outer cycle will remain connected. Every
remaining vertex in the inner cycle will therefore be adjacent to a vertex in the outer cycle, and so the
whole graph will remain connected, no matter what other vertices are removed from the inner cycle.
Therefore no prism graph contains a star cut set.

Lemma 3.3.3. For k ≥ 3, a prism graph Πk contains no universal vertices.
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Proof. By Definition 3.1.2, each vertex only has one neighbour in the opposite cycle, and so for k > 1

every vertex must have at least one vertex in the opposite cycle to which it is not adjacent, and
therefore cannot be a universal vertex.

Lemma 3.3.4. (Durán, Grippo, and Safe [13]) The 3-prism Π3 = C6 is not a circular-arc graph.

Lemma 3.3.5. (Cameron and Hoàng [7]) A connected polygon-circle graph contains a star cut set or
a universal vertex, or else it is a circular-arc graph.

Lemma 3.3.6. The 3-prism Π3 is not a polygon-circle graph.

Proof. By the contrapositive of Lemma 3.3.5, any graph that contains neither a star cut set nor a
universal vertex and is not a circular-arc graph cannot be a connected polygon-circle graph.

• By Lemma 3.3.2, all prism graphs contain no star cut set.

• By Lemma 3.3.3, all prism graphs Πk≥3 contain no universal vertex.

• By Lemma 3.3.4, the 3-prism Π3 is not a circular-arc graph.

Since the 3-prism Π3 is connected, it follows that it must not be a polygon-circle graph.

3.4 Conclusion

Lemma 3.4.1. (Gavril [19]) The class of polygon-circle graphs is a subclass of the class of interval
filament graphs.

Lemma 3.4.2. (Gavril [19]) The class of co-comparability graphs is a subclass of the class of interval
filament graphs.

Theorem 3.4.3. The class of polygon-circle graphs is a proper subclass of the class of interval filament
graphs.

Proof. Consider the 3-prism Π3. By Lemma 3.2.3, this graph is a co-comparability graph. By
Lemma 3.4.2, it is also therefore an interval filament graph. However, by Lemma 3.3.6, it is not
a polygon-circle graph. As such we have an explicit example of a graph that is an interval filament
graph but not a polygon circle graph, and so these classes cannot be equivalent. By Lemma 3.4.1, the
class of polygon-circle graphs is a subclass of the class of interval filament graphs. Therefore the class
of polygon-circle graphs must be a proper subclass of the class of interval filament graphs.

To my knowledge, this marks the first constructive proof that polygon-circle graphs are a proper
subclass of interval filament graphs. With further work it may be possible to generalise this result to
a larger class of graphs that are interval filament graphs but not polygon circle graphs. This result
could have applications in finding excluded subgraphs of polygon-circle graphs and other classes.
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Chapter 4

Average Path Length Minimisation by
Shortcut Edge Addition in
Circular-Arc Graphs

4.1 Introduction

This chapter covers the average path length minimisation through shortcut edge addition problem
(MinAPL, see Section 1.4.5) in weighted circular-arc graphs (see Section 1.3.2 and Definition 1.4.3).
Any solution to this problem generalises to interval graphs. Achieving low average path lengths
using a limited number of edges is closely related to a property of graphs called the small-world
phenomenon, first observed by Milgram [41]. Small-world networks are characterised by having an
average path length that grows logarithmically with the size of the graph while also having a high
clustering coefficient [52]. This is a property that occurs frequently in nature but is uncommon in
structured graphs. Selecting additional edges to minimise the average path length while keeping the
graph small can convert a given graph into a small-world network. We will first discuss solutions for
general graphs and then specialise to circular-arc graphs to achieve better performance in some cases.

4.2 Distance Matrix Update

A straightforward solution for general graphs proposed by Ward and Datta [49] computes the all-pairs
shortest path lengths and hence the total and average path length, and then for each edge in the
set of candidate edges S computes the change in these values as a result of inserting that edge and
simply keeps track of the candidate edge that gave the smallest average path length. We can initialise
the distance matrix with any appropriate all-pairs shortest paths algorithm, for example the classic
O(|V |3) Floyd-Warshall algorithm [14]. For any single candidate edge s = {u, v} ∈ S with weight
w(s) the distance matrix D can be updated using:

D′
i,j = min(Di,j , Di,u + w(s) +Dv,j , Di,v + w(s) +Du,j) (4.1)
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Applying this update for every pair of vertices takes O(|V |2) time. As we know the change in each
element of the distance matrix, we can compute the change in the sum of all shortest path lengths, and
hence the change in average path length. The greatest total decrease will correspond to the minimum
possible average path length. Doing this for each candidate edge takes O(|S||V |2) time to find the
best single candidate edge, giving an overall complexity of O(|V |3 + |S||V |2) if we use Floyd-Warshall
to find the original distance matrix. This approach is presented in Algorithm 1. This algorithm is
also applicable to directed graphs with minor modifications [25].

Algorithm 1 (Ward and Datta [49]) Finding the candidate edge that minimises average path length
in a general graph by updating distance matrix.

1: function DistanceMatrixUpdateMinAPL(G, w, S)
2: (V,E)← G
3: D ← APSP(G,w)
4: ∆←∞
5: e← ∅
6: for s ∈ S | s /∈ E do
7: {u, v} ← s
8: δ ← 0
9: for i ∈ V do

10: for j ∈ V do
11: D′

i,j ← min(Di,j , Di,u + w(s) +Dv,j , Di,v + w(s) +Du,j)
12: δ ← δ +D′

i,j −Di,j

13: end for
14: end for
15: if δ < ∆ then
16: ∆← δ
17: e← {s}
18: end if
19: end for
20: return e
21: end function

4.3 Threshold Algorithm

The threshold algorithm is based on the same underlying logic as the distance matrix update algorithm
described in Section 4.2, and affords significant improvements in performance for large |S|. The
threshold algorithm is based on the observation that as the weight of the inserted edge decreases,
for each pair of vertices there is some threshold value at which that edge will become part of the
shortest path, and after that point for every incremental decrease in the weight of the inserted edge,
the shortest path between those vertices will decrease by the same amount. We will first present the
directed variant of the threshold algorithm and then adapt it to support undirected graphs.

In a directed graph, for any single candidate edge s = (u, v) with weight w(s), the distance matrix
D can be updated using:

D′
i,j = min(Di,j , Di,u + w(s) +Dv,j) (4.2)
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Therefore, the change in path length δi,j as a result of adding e is:

δi,j = D′
i,j −Di,j (4.3)

= min(Di,j , Di,u + w(s) +Dv,j)−Di,j (4.4)

= min(0, Di,u + w(s) +Dv,j −Di,j) (4.5)

which has piecewise definition:

δi,j =

Di,u + w(s) +Dv,j −Di,j if Di,u + w(s) +Dv,j −Di,j < 0,

0 otherwise
(4.6)

Note that for this formulation to be well defined, Di,u + w(s) + Dv,j and Di,j must not both be
infinite. This precludes an infinite disconnection cost, but the same results are achieved by selecting
a sufficiently large finite disconnection cost to be greater than all other values that will be compared
to it. If we define a threshold value Ti,v,j , Equation (4.6) can be rearranged as follows:

Ti,v,j = Di,j −Dv,j (4.7)

δi,j =

Di,u + w(s)− Ti,v,j if Di,u + w(s) < Ti,v,j ,

0 otherwise
(4.8)

Figure 4.1 gives a graphical representation of the threshold value. The change in the total sum of
shortest path lengths as a result of inserting s is:

δ =
∑
i∈V

∑
j∈V

δi,j (4.9)

Observe that only values of i and j such that Di,u + w(s) < Ti,v,j contribute to the sum in Equa-
tion (4.9), and that the left-hand side of this condition is independent of j. Therefore the subset
V ′
i ⊆ V can be defined and substituted into Equation (4.9) as follows:

V ′
i = {j ∈ V | Di,u + w(s) < Ti,v,j} (4.10)

δ =
∑
i∈V

∑
j∈V ′

i

δi,j

=
∑
i∈V

∑
j∈V ′

i

(Di,u + w(s)− Ti,v,j)

=
∑
i∈V

|V ′
i | × (Di,u + w(s))−

∑
j∈V ′

i

Ti,v,j


(4.11)

If the elements of {Ti,v,j | j ∈ V } are sorted by ascending value, the elements of {Ti,v,j | j ∈ V ′
i }

form a contiguous suffix of the sorted list. A binary search on the sorted elements gives the bounds
of this suffix. A pair of cumulative sum arrays can then be used to compute the two sums over V ′

i

in Equation (4.11). A cumulative sum array is a simple data structure that allows the sum of a
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i

v

j
Di,j

Dv,jTi,v,j

Figure 4.1: Shown are the shortest paths from i to j and from v to j with lengths Di,j and Dv,j

respectively. The threshold value Ti,v,j = Di,j − Dv,j is the required length of the hypothetical
shortest path from i to v such that the shortest path from i to j through v has length Di,j .

contiguous range of elements in a list to be computed in constant time. Let C be a sum array for
some given numeric list. The n-indexed element Cn of the sum array is the sum of the first n elements
of the original list. The sum of all elements in the index range [i, j) is then Cj − Ci. The cumulative
sum array for any given list can be computed in linear time in the size of the input list. Algorithm 2
shows a method for solving MinAPL using this result.

The function Sort(V, Ti,j) on Line 12 of Algorithm 2 sorts the elements j ∈ V in ascending
order according to the corresponding value of Ti,v,j . This gives an ordering Ji,v of V for which Ti,v,j

increases monotonically, which can be used to compute the cumulative sum array Wv, as well as a
monotonically increasing ordering T ′

i,v of Ti,v. The function BinarySearchUpperBound(T ′
i,v, L) on

Line 24 performs a binary search over the ordering T ′
i,v and returns an index l, the minimum 0-based

index for which T ′
i,v,l > L, or |T ′

i,v| = |V | if no such l exists. This index is then used in conjunction
with the aforementioned cumulative sum array to compute a partial sum from Equation (4.11) for a
particular i and s. By looping over all i ∈ V and all candidate edges s ∈ S it is possible to compute
δs — the change in sum of shortest path lengths as a result of adding edge s — and s can therefore
be selected to minimise the sum of, and hence the average path length in G′ = (V,E ∪ {s}).

Algorithm 2 has a time complexity of O(apsp(G,w)+ |V |3 log|V |+|V ||S| log|V |), where apsp(G,w)

is the run time of the all-pairs shortest path algorithm used. Even when using the classic Floyd-
Warhsall algorithm, the complexity is dominated by the other terms, giving an overall complexity of
O(|V |3 log|V | + |V ||S| log|V |). For large |S| (i.e., |S| ∈ Ω(|V |2)), this is a significant improvement
in performance over the distance matrix update algorithm (see Algorithm 1 and Section 4.2), giving
run time O(|V |3 log|V |) as opposed to O(|V |4). For small |S|, however, the distance matrix update
algorithm will outperform this algorithm. Memory complexity remains O(|V |2) in all cases, which is
the same as the distance matrix update algorithm.

This approach can be adapted to undirected graphs by simply combining the contributions of the
edge in each direction, because we can know that no shortest path will go through the edge in both
directions. The modified version of this algorithm is presented in Algorithm 3.
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Algorithm 2 Finding the candidate edge that minimises average path length in a general graph using
the threshold algorithm.

1: function ThresholdMinAPL(G, w, S)
2: (V,E)← G
3: D ← APSP(G,w) ▷ Compute the all-pairs shortest path lengths
4: for s ∈ S do
5: δs ← 0 ▷ Initialise change in sum of path lengths for each edge
6: end for
7: for i ∈ V do
8: for v ∈ V do
9: for j ∈ V do

10: Ti,v,j ← Di,j −Dv,j ▷ Compute thresholds as per Equation (4.7)
11: end for
12: Ji,v ← Sort(V, Ti,j) ▷ Sort j ∈ V by Ti,v,j

13: Wv,0 ← 0 ▷ Cumulative sum of Ti,v in sorted order
14: for l ∈ [0, |V |) do
15: j ← Ji,v,l
16: T ′

i,v,l ← Ti,v,j ▷ Sort T
17: Wv,l+1 ←Wv,l + Ti,v,j

18: end for
19: end for
20: for s ∈ S do
21: (u, v)← s
22: if w(s) +Dv,u ≥ 0 then ▷ Disregard negative-weight cycles
23: L← Di,u + w(s) ▷ Length of path from i to v through s
24: l← BinarySearchUpperBound(T ′

i,v, L) ▷ Find lowest threshold that is met
25: δs ← δs + (|V | − l)× L− (Wv,|V | −Wv,l) ▷ As per Equation (4.11)
26: end if
27: end for
28: end for
29: ∆← 0 ▷ Trivial solution
30: e← ∅
31: for s ∈ S do
32: if δs < ∆ then
33: ∆← δs
34: e← {s}
35: end if
36: end for
37: return e
38: end function
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Algorithm 3 Finding the candidate edge that minimises average path length in a general graph using
the threshold algorithm.

1: function UndirectedThresholdMinAPL(G, w, S)
2: (V,E)← G
3: D ← APSP(G,w) ▷ Compute the all-pairs shortest path lengths
4: for s ∈ S do
5: δs ← 0 ▷ Initialise change in sum of path lengths for each edge
6: end for
7: for i ∈ V do
8: for v ∈ V do
9: for j ∈ V do

10: Ti,v,j ← Di,j −Dv,j ▷ Compute thresholds as per Equation (4.7)
11: end for
12: Ji,v ← Sort(V, Ti,j) ▷ Sort j ∈ V by Ti,v,j

13: Wv,0 ← 0 ▷ Cumulative sum of Ti,v in sorted order
14: for l ∈ [0, |V |) do
15: j ← Ji,v,l
16: T ′

i,v,l ← Ti,v,j ▷ Sort T
17: Wv,l+1 ←Wv,l + Ti,v,j

18: end for
19: end for
20: for s ∈ S do
21: {u, v} ← s
22: if w(s) ≥ 0 then ▷ Disregard negative-weight cycles
23: L← Di,u + w(s) ▷ Length of path from i to v through s
24: l← BinarySearchUpperBound(T ′

i,v, L)
25: δs ← δs + (|V | − l)× L− (Wv,|V | −Wv,l)
26: L′ ← Di,v + w(s) ▷ Length of path from i to u through s
27: l′ ← BinarySearchUpperBound(T ′

i,u, L
′)

28: δs ← δs + (|V | − l′)× L′ − (Wu,|V | −Wu,l′)
29: end if
30: end for
31: end for
32: ∆← 0 ▷ Trivial solution
33: e← ∅
34: for s ∈ S do
35: if δs < ∆ then
36: ∆← δs
37: e← {s}
38: end if
39: end for
40: return e
41: end function
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4.4 Repeated All-Pairs Shortest Paths in Circular-Arc Graphs

Circular-arc graphs have various properties that do not hold for general graphs, but the algorithms
presented in Sections 4.2 and 4.3 do not make use of these properties. Of particular relevance to
the MinAPL problem is that there exists an O(|V |2) all-pairs shortest path algorithm for circular-
arc graphs due to Saha, Pal, and Pal [45]. Given the all-pairs shortest path lengths for a graph,
it is simple to compute the average of these lengths in time proportional to the number of paths
being averaged, O(|V |2). This means that we can compute the average path length in the graph
after adding a particular candidate edge in O(|V |2) time. We then need simply perform this process
for each candidate edge, keeping track of the best average path length for any candidate edge (see
Algorithm 4).

Algorithm 4 Finding the candidate edge that minimises average path length in a graph by repeated
all-pairs shortest path.

1: function RepeatedShortestPathsMinAPL(G, w, S)
2: (V,E)← G
3: D ← APSP(G,w)
4: ∆←∞
5: e← ∅
6: for s ∈ S | s /∈ E do
7: δ ← 0
8: E′ ← E ∪ {s}
9: G′ ← (V,E′)

10: D′ ← APSP(G′, w)
11: for i ∈ V do
12: for j ∈ V do
13: δ ← δ +D′

i,j −Di,j

14: end for
15: end for
16: if δ < ∆ then
17: ∆← δ
18: e← {s}
19: end if
20: end for
21: return e
22: end function

This algorithm performs this O(|V |2) process once for each of the O(|S|) candidate edges, giving
an O(|S||V |2) MinAPL algorithm for circular-arc graphs. In a general graph, this method not be
competitive with the algorithms presented in Sections 4.2 and 4.3, but for classes of graphs for which
these exist more efficient all-pairs shortest paths algorithms, such as circular-arc graphs, this gives a
specialised MinAPL algorithm that may be more efficient in some cases.

4.5 Comparison

While it does not work in general graphs, the O(|S||V |2) repeated all-pairs shortest path algorithm
presented in Section 4.4 strictly outperforms the O(|V |3 + |S||V |2) distance matrix update algorithm
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presented in Section 4.2 in circular-arc graphs, where we can exploit more efficient specialised algo-
rithms for finding the all-pairs shortest paths lengths. The repeated all-pairs shortest path algorithm
also outperforms the threshold algorithm presented in Section 4.3 for small |S| ∈ O(|V | log|V |), but is
worse for larger |S|.

Theorem 4.5.1. The MinAPL problem in circular-arc graphs can be solved either in O(|V |3 log|V |+
|V ||S| log|V |) or in O(|S||V |2) time.

Thus, depending on the density of the candidate edge set, the repeated all-pairs shortest paths
approach and the threshold algorithm jointly represent the best solutions to MinAPL in circular-arc
graphs of which I am aware.
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Chapter 5

A Greedy Algorithm for Maximum
Internal Spanning Tree in Interval
Graphs

5.1 Introduction

This chapter examines the MIST problem (see Section 1.4.6) in interval graphs (see Section 1.3.1).
This problem is the subject of a recent work by Li, Feng, Jiang, and Zhu [38]. Section 5.2 discusses their
solution, and presents a counterexample for which their algorithm does not work. Section 5.3 describes
the closely related Hamiltonian path problem (see Definition 1.4.11), and a known greedy algorithm
for finding Hamiltonian paths in interval graphs. Section 5.4 describes a novel O(|I|2 + |E| log |I|)
algorithm for maximum internal spanning tree in interval graphs based on extending this greedy
approach. The greedy algorithms take as input an interval intersection representation of the interval
graph, but this can be constructed for any interval graph in linear time using an algorithm by Corneil,
Olariu, and Stewart [11], and so is not a dominating factor in the complexity of these algorithms.

A reviewer has pointed out that the algorithm presented in Section 5.4 is very similar to one
presented by Li, Shang, and Shi [37]. I developed this algorithm independently in early 2021, prior
to the publication of their result in July of 2022, but had not planned to publish it until after this
thesis. Though this is no longer a unique result, it is still my own original work, and so I have left
this chapter as I originally intended to publish it.

5.2 Li et al. Interval MIST Algorithm

Li, Feng, Jiang, and Zhu [38] present a novel algorithm (see Algorithm 5) for solving the interval MIST
problem for a set of n intervals in O(n2) time. This algorithm is based on computing a maximum path
cover P ∗ of the intersection graph of the intervals and connecting these paths to construct a spanning
tree. A maximum path cover is a set of paths that cover all vertices in the graph using the maximum
number of edges (or equivalently the minimum number of paths). The total number of edges in all
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the paths of the path cover is given by E(P ∗). Their proof of correctness for this algorithm depends
on the following propositions:

[38, Lemma 5]: The number of internal vertices of a maximum internal spanning tree is
less than the number of edges of a maximum path cover in a graph.

[38, Lemma 8]: Let P ∗ be a maximum path cover of an interval graph G. Then [Li et al.’s
algorithm] returns a spanning tree with the number of internal vertices equal to |E(P ∗)|−1.

[38, Theorem 1]: [Li et al.’s algorithm] can find a maximum internal spanning tree for
an interval graph with time complexity O(n2), where n is the number of vertices in the
interval graph.

Li et al.’s proof for Theorem 1 begins:

By [38, Lemma 8] and [38, Lemma 5], [Li et al.’s algorithm] returns a spanning tree with
the number of internal vertices equal to the upper bound of the number of internal vertices
in a spanning tree. So [Li et al.’s algorithm] can find a maximum internal spanning tree
on an interval graph.

We can show that at least one of these results must be incorrect by constructing a counterexample
for which these results do not hold. Such a counterexample is given in Figure 5.1.

Theorem 5.2.1. [38, Theorem 1] does not hold for all interval graphs.

Proof. Consider the interval graph G presented in Figure 5.1. G is already a tree, and so has a unique
spanning tree, G itself. G contains 2 internal vertices: B and D. G has a maximum path cover P ∗ of
2 paths with a total of E(P ∗) = 4 edges: ⟨A,B,C⟩ and ⟨E,D,F ⟩. By [38, Lemma 8], running Li et
al.’s algorithm on G would return a spanning tree with |E(P ∗)|−1 = 3 internal vertices. However, we
previously showed that G is its own spanning tree and contains just 2 internal vertices, so [38, Lemma
8] cannot possibly have produced a spanning tree with 3 internal vertices, and so must not hold for
this interval graph. Therefore Li et al.’s algorithm was not able to find a MIST for this interval graph,
and so [38, Theorem 1] cannot hold for all interval graphs.

An implementation of Algorithm 5 is available online at https://github.com/gozzarda/interval_
mist [23]. To the best of my knowledge Li et al. did not provide an implementation of this algo-
rithm, and my implementation is the first. This result was discovered by testing this implementation
against a sample of randomly generated interval graphs. The algorithm failed on the graph shown in
Figure 5.1 and similar structures, as it reached a state in which it assumes the existence of a vertex
with a particular property based on the following lemma:

[38, Lemma 3]: Let G1, G2 be two connected subgraphs of an interval graph G. If G1 and
G2 are intersecting and [the leftmost right endpoint in G1] < [the leftmost right endpoint
in G2], then there exists another vertex w ∈ V (G1), such that w and [the vertex with
leftmost right endpoint in G2] are connected by an edge of G.
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Figure 5.1: An interval graph with maximum path cover of four edges and maximum internal spanning
tree of two interval vertices.

Algorithm 5 (Li, Feng, Jiang, and Zhu [38]) Finding a maximum internal spanning tree on an interval
graph.
Require: An interval graph G which has already been right-end ordered.
Ensure: A maximum internal spanning tree of G

1: Find a maximum path cover P ∗ of G, which can be done in linear time using an algorithm by
Arikati and Rangan [1].

2: Tc ← {p | p is a path component of P ∗}, PC ← P ∗ \ {p}
3: while PC is not empty do
4: Choose a path component q from PC , where q is intersecting TC .
5: if leftMost(q) < leftMost(TC) then
6: By [Lemma 3], choose a vertex w ∈ V (q) which is adjacent to vleftMost(TC). Let TC be the

resultant new tree by adding the edge between w and vleftMost(TC).
7: end if
8: if leftMost(q) > leftMost(TC) then
9: By [Lemma 3], choose a vertex w ∈ V (TC) which is adjacent to vleftMost(q). Let TC be the

resultant new tree by adding the edge between w and vleftMost(q).
10: end if
11: PC ← PC \ {q}
12: end while
13: return TC .
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The presented proof of this lemma depends on partitioning G1 into two vertex subsets based on which
side of the leftmost right endpoint in G2 each vertex’s right endpoint lands, and arguing that since the
two subsets must be connected there must be a vertex that intersects with the leftmost right endpoint
interval in G2. This proof fails to consider the possibility that all vertices in G1 are wholly to the left
of the leftmost right endpoint interval in G2. The algorithm uses this result to justify connecting each
path to the spanning tree via the leftmost right endpoint interval of one component, but due to this
oversight such an edge does not always exist. In the case of the given counterexample, the algorithm
finds the maximum path cover given above and attempts to join them, assuming the existence of an
edge between E (the leftmost right endpoint interval of the ⟨E,D,F ⟩ path) to some vertex in the
other path, yet no such edge exists. The algorithm does not handle this contradiction and so halts
with an error.

This counterexample shows the existence of an error in the proof of correctness presented in Li,
Feng, Jiang, and Zhu [38]. As a result their algorithm cannot be assumed to be correct for any given
interval graph.

5.3 Hamiltonian Path in Interval Graphs

As mentioned in Section 1.4.6, the MIST problem is a generalisation of the Hamiltonian path problem,
in that if a Hamiltonian path exists, it is also a valid MIST, but for any graph where the MIST is
not a path, no Hamiltonian path can exist. It follows that the MIST problem must be NP-hard in
general graphs, as is the Hamiltonian path problem. In interval graphs, however, there are a number
of problems that can be solved in polynomial time despite being NP-complete in general graphs. For
example, there exists an optimal O(n) algorithm by Chang, Peng, and Liaw [9] for Hamiltonian path
in the intersection graph of a set of n intervals for which the sorted order of interval endpoints is
known. We aim to generalise one of these algorithms to construct a greedy algorithm for the MIST
problem in interval graphs. For this and later sections in this chapter and unless otherwise specified,
intervals are considered to have the same ordering as the ordering of their right endpoints.

Of particular interest for our purposes is a greedy algorithm that can find a Hamiltonian path for
the intersection graph of a set of n intervals in O(n log n) [39]. Note that this algorithm as originally
published orders intervals by their left endpoints, not right, but the algorithm is presented mirrored
here for consistency (see Algorithm 6). This algorithm operates by greedily building a path through
the intersection graph of the intervals until it has either found a Hamiltonian path or is unable to
continue, in which case no Hamiltonian path can exist. It begins with a trivial path consisting of just
the single interval with leftmost right endpoint. It then incrementally extends this path by greedily
picking the leftmost of the remaining intervals that is adjacent to the previous interval, and connecting
the chosen interval to the previous interval. If this algorithm ever encounters a state in which there are
remaining intervals that are not yet part of the path, but none of them are adjacent to the previous
interval, this means that no Hamiltonian path exists for the intersection graph of the given intervals.
If the algorithm successfully constructs a path that covers all intervals, this is of course a Hamiltonian
path. In either case, the algorithm returns the path P it constructed and a set of any remaining
intervals S.
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Algorithm 6 Attempt to greedily build a Hamiltonian path for a set of intervals I [39]
1: function FindPath(I)
2: p← min(I) ▷ p holds the last vertex added to the path
3: S ← I \ {p} ▷ The set of vertices not yet in the path
4: VP ← {p}
5: EP ← ∅
6: while ∃ s ∈ S : s ∋∈ p. do ▷ There exists a vertex that can be appended to the path
7: t← min(s ∈ S | s ∋∈ p) ▷ Greedily choose the leftmost neighbour to append
8: S ← S \ {t}
9: VP ← VP ∪ {t}

10: EP ← EP ∪ {p, t}
11: p← t
12: end while
13: P ← (VP , EP )
14: return (P, S)
15: end function

Lemma 5.3.1. (Manacher, Mankus, and Smith [39, Theorem (Path HP)]) For any set of intervals
I with intersection graph G, (P, S) = FindPath(I) will return a Hamiltonian path P in G such that
S = ∅ if and only if G has a Hamiltonian path.

The path constructed by Algorithm 6 can be shown to have some interesting properties. These
results will prove useful in Section 5.4.

To show that the leftmost interval in I is guaranteed to be a leaf in the greedy path P , we need
simply observe that after selecting its successor in the path, it will never again have an edge connected
to it.

Lemma 5.3.2. Let I be a set of intervals. Let (P, S) = FindPath(I). The leftmost interval min(I)

is a leaf in P .

Proof. FindPath(I) begins by picking min(I) as the first vertex in P , and continues by strictly
appending other vertices to the path, only ever adding an edge between the immediate previous
vertex, p, and the next chosen vertex, t. Therefore at most one edge may ever have been connected
to min(I), and so min(I) must be a leaf in P .

As the path is constructed, Algorithm 6 maintains a set S of the remaining intervals, which is
simply all intervals that have not yet been added to the path.

Lemma 5.3.3. Let I be a set of intervals. In the execution of FindPath(I), it is a loop invariant
that S = I \ VP .

Proof. S is initially defined to be exactly this prior to the start of the loop. For all subsequent
iterations of the loop, the same vertex, t, is added to VP and deleted from S, and no other changes
are made to either. Thus by induction S = I \ VP at the beginning and end of every iteration of the
loop in FindPath(I).

Every edge that appears in the path is the result of the former interval selecting the latter as its
leftmost remaining neighbour (that is, that does not appear in the path before it).
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5. A GREEDY ALGORITHM FOR MAXIMUM INTERNAL SPANNING TREE IN
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v1 u

vk−1

vk

vi

Figure 5.2: An example arrangement of intervals showing that if vi is wholly right of u there must
be some pair of intervals vk−1, vk such that vk is wholly right of u and vk−1 ∋∈ u. Dashed intervals
represent the existence of a connected path of intervals.

Lemma 5.3.4. Let I be a set of intervals. Let (P ′, S′) = FindPath(I). Let P ′ = ⟨v1, . . . , vn⟩ such that
v1 = min(I). For any edge {vk, vk+1} in P ′, it follows that vk+1 = min(s ∈ I \ {v1, . . . , vk} | s ∋∈ vk),
the leftmost remaining interval that intersects vk.

Proof. Consider the execution of FindPath(I) up to the point where it has added vk to VP . At the
beginning of the next iteration of the loop, p = vk. By Lemma 5.3.3, S = I \ VP = I \ {v1, . . . , vk}.
Therefore vk+1 must have been selected by t ← min(s ∈ S | s ∋∈ p), and so vk+1 = min(s ∈
I \ {v1, . . . , vk} | s ∋∈ vk), as desired.

This means that any interval that is selected to be added to the path may not be wholly to the
right of any remaining intervals, as for any other interval wholly to its left, there should have been an
earlier interval in the path that would have selected that as its successor.

Lemma 5.3.5. Let I be a set of intervals. Let (P, S) = FindPath(I). Let P = ⟨v1, . . . , vn⟩. For any
index i, no interval in I \ {v1, . . . , vi} may be wholly left of vi.

Proof. We will show this by contradiction. Let i be some index and u ∈ I \ {v1, . . . , vi} some interval
such that u is wholly left of vi. By Lemma 5.3.2, we know v1 = min(I), and hence that vi may
not be wholly left of v1. Therefore v1 < u < vi. Since vi is known to be wholly right of u, there
must be some k ≤ i such that vk is the first interval in P that is wholly right of u. Therefore vk−1

may not be wholly right of u, but it intersects vk, which we know to be wholly right of u, and so
vk−1 ∋∈ u (see Figure 5.2). By Lemma 5.3.4, the presence of the {vk−1, vk} edge in P means that
vk = min(s ∈ I \ {v1, . . . , vk−1} | s ∋∈ vk−1). Yet since k ≤ i and u ∈ I \ {v1, . . . , vi}, we know that
u ∈ I \ {v1, . . . , vk−1}, and we also know that u < vk, which means that vk cannot have been the
leftmost remaining interval. Thus we have arrived at a contradiction, and so our original assumption
must have been false, as desired.

Manacher, Mankus, and Smith [39] show that this algorithm can be implemented in O(|I| log |I|)
time and O(|I|) space using a data structure they describe as a heap but which is more commonly
called a segment tree. Segment trees are binary trees in which the leaves represent individual items in
an ordered collection and each internal node stores the result of some associative aggregation operation
on the leaves of the subtree rooted at that node. Updating a leaf in a range tree requires updating
the values of its parents, but maintaining this structure allows us to efficiently find the result of
aggregating any contiguous range by combining the values of internal nodes that are entirely spanned
by this range. For a balanced tree, updates take logarithmic time, as we must update every ancestor
of the modified leaf. In this case, they use range trees to select the leftmost remaining interval that
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intersects p. Each interval populates a leaf of the range tree ordered by their left endpoints. Each leaf
initially contains the right endpoint of the corresponding interval, and internal range nodes contain
the minimum of all right endpoints in the range. This initial tree can be constructed in linear time. To
find min(s ∈ S | s∋∈p), we query the range tree to find the minimum right endpoint for intervals with
left endpoints less than r(p), which can be done in logarithmic time. They show (as does Lemma 5.3.5)
that no interval in S can be wholly to the left of p, so this query will always find the interval that
intersects p with leftmost right endpoint. To remove an interval from S we can simply replace it with
a sentinel value that is considered greater than every other endpoint and so will never be selected as
the minimum. This means that we can select the leftmost neighbour of p and remove it from S in
logarithmic time, giving an overall complexity of O(|I| log |I|).

5.4 Greedy Interval MIST Algorithm

The logic of the greedy Hamiltonian path algorithm for interval graphs (see Algorithm 6 can be
extended to give a greedy algorithm for finding MISTs of connected interval intersection graphs.
Section 5.4.1 presents a recursive construction of such an algorithm, and proves its correctness. Sec-
tion 5.4.2 adapts this to an iterative version of the same algorithm, and Section 5.4.3 shows that this
can be implemented in O(|I| log|I|).

5.4.1 Recursive Algorithm

As detailed in Section 5.3, if Algorithm 6 fails to find a Hamiltonian path P where (P, S) = FindPath(I)
such that S = ∅, then no Hamiltonian path exists. In the case that S is nonempty, any MIST must
have more than two leaves. If we collapse the tail (all but the first vertex) of P into a single vertex,
this should remove a leaf from the MIST, and so gives a smaller subproblem to solve. If we can then
restore the collapsed vertices, this suggests a recursive algorithm based on repeated application of
FindPath. This algorithm is presented in Algorithm 7.

Any connected graph must have a MIST, and any MIST of this graph must have the same,
minimal, number of leaves. Therefore any set of intervals with a connected intersection graph has a
specific number of leaves that appear in any MIST of that graph. We aim to show the correctness of
Algorithm 7 by induction on the number of leaves in a MIST of the intersection graph of the input.

Definition 5.4.1. Leaf-Leaf Path: A leaf-leaf path in a tree is a path in which both ends of the path
are leaves in the tree.

If we may assume that the greedy path found by FindPath is a leaf-leaf path in some MIST, we
can show the inductive step holds. We do this by showing that contracting the tail of the greedy path
as in Algorithm 6 will remove a leaf from the tree, giving a smaller subproblem that we can solve
recursively. Then re-expanding the tail will reintroduce at most one leaf, which must therefore give a
MIST.

Lemma 5.4.1. Let I be a set of intervals with connected intersection graph G. Let (P, S) =

FindPath(I). Let T be a MIST of G with l > 2 leaves in which P is a leaf-leaf path (such as
in Figure 5.3a). Let I ′ be any set of intervals with connected intersection graph G′ which contains an

45



5. A GREEDY ALGORITHM FOR MAXIMUM INTERNAL SPANNING TREE IN
INTERVAL GRAPHS

Algorithm 7 Build a MIST for a set of intervals I with connected intersection graph
1: function FindMIST(I)
2: (P, S)← FindPath(I) ▷ Attempt to find a Hamiltonian path
3: if S = ∅ then
4: return P ▷ Any Hamiltonian path is a MIST
5: end if
6: Vt ← V (P ) \ {min(I)} ▷ The tail of the path
7: u←

∪
Vt ▷ The union of the tail, another interval

8: I ← (I \ Vt) ∪ {u} ▷ Replace the tail with its union
9: (VT , ET )← FindMIST(I) ▷ Recursively solve subproblem

10: VT ← (VT \ {u}) ∪ Vt ▷ Re-expand u
11: ET ← ET ∪ E(P )
12: for e ∈ ET | u ∈ e do ▷ Replace each edge incident on u with an edge to some element of Vt

13: v ← e \ u ▷ v was a neighbour of u
14: Let u′ ∈ {x ∈ Vt | x ∋∈ v} ▷ Select an arbitrary neighbour of v from Vt

15: ET ← (ET \ {e}) ∪ {u′, v} ▷ Replace the edge
16: end for
17: return (VT , ET )
18: end function

v1

v2

vn−1

vn

t1

t2

(a) A tree in which P is a leaf-leaf path.

v1

u

t1 t2

(b) The result of replacing the tail of P with its
contraction, u.

Figure 5.3: An example of converting a tree in which P = ⟨v1, . . . vn⟩ is a leaf-leaf path into a tree
with one fewer leaf where u is the contraction of v2, . . . , vn.
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l− 1 leaf MIST. If FindMIST(I ′) will return a MIST of G′, then FindMIST(I) will return a MIST
of G.

Proof. Let P = ⟨v1, . . . , vn⟩ such that v1 = min(I), as per Lemma 5.3.2. Let Vt = V (P ) \ {min(I)} =
{v2, . . . , vn} and u =

∪
Vt, as in Algorithm 7. Since we know the elements of Vt form a connected

path, their union u will be an interval itself, and any interval that intersects an element of Vt must
also intersect u. Therefore we may construct a spanning tree T ′ by taking the vertex contraction of
the elements of Vt and replacing them with u and all edges incident on one of these elements with an
edge to u instead. An example of this transformation is given in Figure 5.3.

The degrees of any vertices that are not elements of Vt will not have changed, and since T ′ is a
spanning tree but v1 is a leaf connected only to u, u must be internal in T ′. Since Vt contained a leaf
of T , T ′ therefore must have l − 1 leaves.

We can therefore choose I ′ = V (T ′) = (I\Vt)∪{u}. Since we know T ′ is an l−1 leaf spanning tree of
G′, therefore any MIST of G′ may have at most l−1 leaves. Hence we may assume T ′

g = FindMIST(I ′)

to be a MIST of G′ and to contain at most l − 1 leaves.
We can now re-expand u in T ′

g, replacing it with the elements of Vt and reintroducing the edges
from P to give a new tree Tg. Any other intervals that intersected u must also therefore intersect
some element of Vt, and so all edges incident on u can be replaced with an edge to some element of
Vt. Since all other vertices in Vt are already internal in P , only vn may be a new leaf, meaning Tg can
have at most l leaves, and so must be an l leaf MIST of G, as desired.

We therefore wish to show that for any connected interval intersection graph there exists some
MIST in which the greedy path is a leaf-leaf path. This will require us to show that the existence of
a MIST is sufficient to show the existence of a MIST with this property. To this end we will explore
several results on prefixes of the desired path and MISTs which contain them. Since the path in
question is constructed greedily, it stands to reason that even if other options that were not chosen
by the greedy algorithm are removed, it will still make the same choices, as they will continue to be
the locally best option.

First, if we know that FindPath would chose a particular interval to extend the greedy path, then
removing any of the other remaining intervals would not cause it to choose a different interval.

Lemma 5.4.2. Let I be a set of intervals with connected intersection graph G. Let (P, S) =

FindPath(I). Let P = ⟨v1, v2, . . . , vn⟩. Let I ′ ⊆ I be a subset of intervals and (P ′, S′) = FindPath(I ′)
such that P ′ has a common prefix ⟨v1, v2, . . . , vk⟩ with P . If vk+1 ∈ I ′, then ⟨v1, v2, . . . , vk, vk+1⟩ is a
prefix of both P and P ′.

Proof. Consider the execution of FindPath(I) and FindPath(I ′). We know that both will reach a
point at which P = ⟨v1, v2, . . . , vk⟩. Let us assume vk+1 ∈ I ′. By Lemma 5.3.3, therefore vk+1 ∈ S in
both, and S in FindPath(I) is a superset of that in FindPath(I ′). We know that FindPath(I) will
then find min(s ∈ S | s∋∈P|P |) = vk+1. Since it is the minimum in FindPath(I), and FindPath(I ′)
does not have any other intervals from which to select, it must also be the minimum interval in
FindPath(I ′). Therefore both FindPath(I) and FindPath(I ′) will append vk+1 to P , and so
⟨v1, v2, . . . , vk, vk+1⟩ will be a prefix of both.
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(a) A 7-leaf tree T . (b) A leaf-induced subtree t of T with 4 leaves.

(c) An alternative 4-leaf spanning tree t′ of V (t). (d) T ′, the result of replacing the edges of t in T
with those from t′, another 7-leaf tree.

Figure 5.4: An example of replacing a leaf-induced subtree of a tree.

Next, we use this to show that for any prefix of the greedy path, removing intervals other than
those in the path will not cause FindPath to choose a different prefix.

Lemma 5.4.3. Let I be a set of intervals with connected intersection graph G. Let (P, S) =

FindPath(I). Let P = ⟨v1, v2, . . . , vn⟩. Let p = ⟨v1, v2, . . . , vk⟩ be some prefix of P . Let I ′ ⊆ I

be some subset of intervals such that V (p) ⊆ I ′. Let (P ′, S′) = FindPath(I ′). Then p is also a prefix
of P ′.

Proof. We will show this by induction on the length of the prefix, k.

• Base case k = 1: This follows from Lemma 5.3.2, as if min(I) ∈ I ′, then min(I ′) = min(I) must
be a prefix of both P and P ′.

• Inductive step: By the inductive hypothesis we may assume this holds for prefixes of length k.
Therefore we know ⟨v1, v2, . . . vk⟩ is a prefix of both P and P ′. By Lemma 5.4.2, if vk+1 ∈ I ′,
then ⟨v1, v2, . . . , vk, vk+1⟩ is a prefix of P ′. Therefore this holds for any prefix of length k + 1.

By induction it follows that for any prefix p of P , p is also a prefix of P ′.

Using this we can establish some transformations on MISTs that will allow us to construct desirable
substructures while remaining a MIST. We will use these to show that we can transform any MIST
into a MIST that contains the greedy path as a leaf-leaf path, as desired by Lemma 5.4.1.
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Definition 5.4.2. Leaf-Induced Subtree: A leaf-induced subtree of a tree for a given set of leaves
of that tree is the minimal subtree that contains those leaves. See Figure 5.4b for an example. Note
that any leaf-leaf path is a leaf-induced subtree.

Any leaf-induced subtree of a MIST can be replaced with an alternative spanning tree of the same
vertices, and so long as the alternative doesn’t have more leaves than the original subtree, the result
must still be a MIST. We show this by considering that the degree of any vertices not in the subtree
does not change, and merging the alternative tree back into the MIST cannot decrease the degree of
any vertices in the alternative tree, and so cannot possibly increase the number of leaves.

Lemma 5.4.4. Let T be a MIST of some graph G. Let t be a leaf-induced subtree of T with l leaves.
Let t′ be any spanning tree of V (t) with at most l leaves. Let T ′ be the result of removing all edges in
t from T and replacing them with those from t′. T ′ is a MIST of G, and the leaves of t′ are leaves in
T ′.

Proof. See Figure 5.4 for an example of the replacement process. Since t′ is still connected, so must
be T ′, and the number of vertices and edges in T ′ is the same as in T , and so T ′ must still be a tree.
Since we only remove edges that appear in t, any vertex that does not appear in t cannot decrease in
degree, and so may not become a leaf. Furthermore, any vertices in t′ cannot have lesser degree in T ′

than in t′, as all edges that appear in t′ also appear in T ′, and so no internal vertex in t′ can be a leaf
in T ′. Therefore T ′ can have at most as many leaves as T . But T was defined as being a MIST, so no
other spanning tree may have fewer leaves than T , and so T ′ must have the same number of leaves as
T , meaning all leaves in t′ are leaves in T ′ and T ′ is a MIST of G.

Using this, we can replace any leaf-leaf path in a MIST with any other path through the same
vertices while remaining a MIST. Specifically, we can replace it with the greedy Hamiltonian path
given by FindPath for those intervals. Since we already have a MIST, the number of leaves cannot
possibly decrease, meaning that the leaves of the greedy path must also be leaves in the new MIST.

Lemma 5.4.5. Let I be a set of intervals with connected intersection graph G. Let T be a MIST of
G. Let p be a leaf-leaf path in T . Let (P, S) = FindPath(V (p)). There exists a MIST of G in which
P is a leaf-leaf path.

Proof. Note that p is a leaf-induced subtree of T . Since p is a path, we know the intersection graph
of V (p) must have a Hamiltonian path. Therefore, by Lemma 5.3.1, P will be a Hamiltonian path
of V (p). By Lemma 5.4.4 we can replace the edges from p with those from P to give a MIST which
contains P as a subgraph and in which the leaves of P are leaves of the MIST. Therefore there exists
a MIST of G in which P is a leaf-leaf path.

We can now use these transformations to construct MISTs which contain prefixes of the greedy
path.

Definition 5.4.3. Leaf Path: A leaf path in a tree is a path in which at least one end of the path
is a leaf in the tree.
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b

l1

v1

l2

(a) A tree in which v1 is not a leaf.

b

l2

v1

l1

(b) A possible result of reordering ⟨l1, . . . , l2⟩ using
FindPath. Note that since v1 = min(I) it will
now be a leaf.

Figure 5.5: An example of converting a tree in which v1 = min(I) is not a leaf into one where it is by
replacing the ⟨l1, . . . , l2⟩ path with the path given by FindPath.

Definition 5.4.4. Prefix Path: Let I be a set of intervals with connected intersection graph G. Let
T be a spanning tree of G. Let (P, S) = FindPath(I). A prefix path is a leaf path of T which is a
prefix of P .

Since we know the leftmost interval, min(I), will always be a leaf in the greedy path, we can
reorder any leaf-leaf path that contains it to construct a MIST in which min(I) is a leaf, as it must
be in order for the MIST to contain the greedy path as a leaf-leaf path as desired by Lemma 5.4.1.

Lemma 5.4.6. Let I be a set of intervals with connected intersection graph G. Let T be a MIST of
G. There exists a MIST of G in which the leftmost interval min(I) is a leaf.

Proof. Select any leaf-leaf path p through min(I) in T . Let (P, S) = FindPath(V (p)). By Lemma 5.3.2,
min(I) is a leaf in P . By Lemma 5.4.5, there exists a MIST of G in which P is a leaf-leaf path, and
hence in which min(I) is a leaf. A simple example of this transformation is given in Figure 5.5.

Definition 5.4.5. Branch Vertex: A branch vertex or simply branch in a tree is any vertex with
degree greater than 2.
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v1

vk

b

vk+1

l

(a) A tree in which the longest prefix path
⟨v1, . . . , vk⟩ does not contain a branch.

v1

vk

vk+1

b

(b) The tree after reordering Q = ⟨v1, . . . , l⟩ using
FindPath to construct a longer prefix path.

Figure 5.6: An example of reordering a tree to extend the longest prefix path if it does not contain
a branch. After repeated application, eventually the longest prefix path in the tree must contain a
branch.
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For any prefix path that does not contain a branch vertex, there must be a leaf-leaf path that
starts with this prefix and goes through any other vertex we desire. By selecting such a path that
contains the next interval that would appear in the greedy path, we can reorder this path to construct
a MIST which contains a longer prefix path than the original.

Lemma 5.4.7. Let I be a set of intervals with connected intersection graph G. Let T be a MIST of
G. Let (P, S) = FindPath(I). Let p be the longest prefix path in T . If no vertex in p is a branch,
then there exists a MIST of G which contains a longer prefix path than p.

Proof. An example is given in Figure 5.6. Let p = ⟨v1, . . . , vk⟩ and P = ⟨v1, . . . , vk, vk+1, . . . vn⟩ such
that v1 = min(I). We know therefore that the edge {vk, vk+1} exists in G. Let p′ = ⟨v1, . . . , vk, vk+1⟩
be a longer prefix of P than p. It suffices to show that there exists a MIST of G which contains p′

as a leaf path. Let Q be any leaf-leaf path through v1 and vk+1. Since no vertex in p is a branch,
any path from v1 to another leaf must first pass through all vertices in p, and so Q must therefore
contain p as a subgraph. Let I ′ = V (Q). Therefore V (p′) ⊆ I ′ ⊆ I. Let (P ′, S′) = FindPath(I ′).
By Lemma 5.4.3, any prefix of P must also therefore be a prefix of P ′, and so p′ is a prefix of P ′. By
Lemma 5.4.5, there exists a MIST of G in which P ′ is a leaf-leaf path. In any such MIST p′, being a
prefix of P ′, must be a leaf path. Hence there exists a MIST of G which contains p′ as leaf path, as
desired.

Repeating this process will extend the prefix path until it reaches a branch. Otherwise it would
eventually grow so long that it must contain all vertices, and so must be a Hamiltonian path, which
means any tree with a branch could not have been a MIST.

Lemma 5.4.8. Let I be a set of intervals with connected intersection graph G. Let there exist a MIST
of G with l > 2 leaves. Let (P, S) = FindPath(I). There exists a MIST of G which contains a prefix
path which contains a branch.

Proof. By Lemma 5.4.6, there exists a MIST of G in which the leftmost interval min(I) is a leaf. By
Lemma 5.3.2, min(I) is also a leaf of P , and hence a prefix of length 1. Therefore there exists a MIST
of G which contains a length k = 1 prefix path. This prefix path contains a single vertex, a leaf, and
so contains no branch.

By Lemma 5.4.7, if there exists a MIST of G in which the longest prefix path contains no branch,
then there exists a MIST of G which contains a longer prefix path. Through repeated application of
this result we must either find a MIST which contains a prefix path with a branch or a prefix path
through all vertices. Since l > 2, we know that G does not contain a Hamiltonian path, and hence no
prefix path may contain all vertices. Therefore there must exist a MIST of G which contains a prefix
path which contains a branch.

Combining these results, we can show first that for any connected interval intersection graph for
which there exists a three-leaf MIST, there must also exists a MIST which contains the greedy path
as a leaf-leaf path. We will show this using the following steps:

• As above, extend the prefix path until it contains a branch (the unique branch in a three-leaf
tree)
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v1

b

l1 l2

(a) A 3-leaf tree with unique branch b = vk such
that ⟨v1, . . . , vk⟩ is a prefix path.

v1

b

v′j−1v′1

v′j+1

v′n

(b) Reorder the leaf-leaf path ⟨l1, . . . , l2⟩ using
FindPath such that v′j = b.

v1

b

v′j−1v′1

v′j+1

v′n

(c) Use v′1 ∋∈ b to reattach b to the other end
of ⟨v′1, . . . , v′j−1⟩. Note this forms a prefix path
⟨v1, . . . , vk+j−1⟩ such that vk+j−1 = v′j−1.

v1

b

v′j−1v′1

vk+j

v′j+1

v′n

(d) Use v′j−1 ∋∈ vk+j to connect ⟨v′j+1, . . . , v
′
n⟩ to

v′j−1 such that b is no longer the branch and so the
branch-free prefix path is now longer.

Figure 5.7: The process of extending a branch-free prefix path in a 3-leaf MIST. As shown in
Lemma 5.4.9, repeated application of this transformation must eventually construct a MIST in which
the greedy path is a leaf-leaf path.
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• The resulting MIST must have a leaf-leaf path through the branch that contains every vertex
not in the prefix path (Figure 5.7a)

• Reorder this leaf-leaf path using FindPath (Figure 5.7b)

• Any interval that appears before the branch in this reordering must be less than the branch, but
cannot intersect the branch’s predecessor, and so must be wholly contained within the branch
interval

• Therefore the leftmost interval in this reordering must be the leftmost remaining neighbour of
the branch

• Rearrange the MIST to connect the branch to its leftmost remaining neighbour, thereby extend-
ing the prefix path (Figure 5.7c)

• If the end of the new prefix path is not adjacent to any remaining interval, then it must be the
end of the greedy path, and so we have found a MIST that contains the greedy path as a leaf-leaf
path, as desired

• If not, then by connecting it to one of the vertices in the remaining path segment, we can
disconnect this segment from the branch, making it no longer the branch (Figure 5.7d)

• Therefore we have constructed a longer branch-free prefix path, which cannot continue forever,
and so must eventually construct a MIST which contains the greedy path as a leaf-leaf path

Lemma 5.4.9. Let I be a set of intervals with connected intersection graph G. Let T be a MIST of
G with 3 leaves. Let (P, S) = FindPath(I). There exists a MIST of G in which P is a leaf-leaf path.

Proof. By Lemma 5.4.8, we may assume without loss of generality that T contains a prefix path that
contains a branch. Any tree with exactly 3 leaves contains a single branch vertex. Let b be the unique
branch vertex of T . Let vk = b such that p = ⟨v1, . . . , vk−1⟩ is the longest prefix path that does not
contain a branch. This construction is shown in Figure 5.7a.

Let I ′ = I \ V (p). We know that there exists a leaf-leaf path in T through every interval in
I ′, and so the intersection graph of these intervals must have a Hamiltonian path. Therefore let
(P ′,∅) = FindPath(I ′).

By Lemma 5.3.5, no interval in I ′ may be wholly to the left of any in p. Therefore they must
either intersect vk−1 or be wholly to its right. However, by Lemma 5.3.4, the presence of the {vk−1, b}
edge in P shows that any remaining interval that intersects vk−1 may not be left of b. Conversely, any
interval in I ′ less than b may not intersect vk−1, and so must be wholly to its right. Therefore, since
we know vk−1 ∋∈ b, the left endpoint of b must be before the right endpoint of vk−1, and hence before
the left endpoint of any interval in I ′, which we know to be wholly to the right of vk−1. It follows
that any interval in I ′ less than b must be wholly contained within b, since we know its right endpoint
must be left of the right endpoint of b, and its left endpoint must be right of the left endpoint of b.

We may assume b is not a leaf in P ′, as otherwise we could attach p to P ′ using the {vk−1, v}
edge to construct a Hamiltonian path of G, which contradicts with the assumption that the MIST of
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G has 3 leaves. Let P ′ = ⟨v′1, . . . , v′j , . . . , v′n⟩ such that v′j = b (see Figure 5.7b). By Lemma 5.3.2,
v′1 = min(I ′) < b. Therefore, as above, v′1 must be wholly contained within b, and so v′1 ∋∈ b.

Consider vk+1, the next interval after b in the original path P . By Lemma 5.3.4, the presence of the
{b, vk+1} edge shows that vk+1 is the leftmost of the remaining intervals that intersects b. But, since
v′1 = min(I ′) and v′1∋∈b, it must also be the case that v′1 is the leftmost of the remaining intervals that
intersects b. Hence vk+1 = v′1. Furthermore, we know from P ′ that for all v′i before b in P ′, i < j − 1,
the leftmost remaining interval that intersects v′i is v′i+1, so it follows that for all i < j, vk+i = v′i.

We can therefore construct a path p′ = ⟨v1, . . . , vk+j−1⟩ that is a prefix of P (see Figure 5.7c). We
also know from P ′ that it is possible to construct a path p′′ = ⟨v′j+1, . . . , v

′
n⟩ through every interval in

I \ V (p′).
If p′ = P , then we can construct a spanning tree of G by connecting p′ and p′′ using the {b, v′j+1}

edge from P ′. Since v′j+1 is a leaf in p′′, and b is internal in p′, this spanning tree will have exactly
three leaves: v1, vk+j−1, and v′n, and so must be a MIST of G. Therefore we have shown there exists
a MIST of G in which P is a leaf-leaf path, as desired.

On the other hand, if p′ = P , then since p′ is a prefix of P we know the edge {vk+j−1, vk+j}
from P must connect the leaf vk+j−1 of p′ to some vertex in p′′. The vertex vk+j may not be a leaf
in p′′, as otherwise we could use this edge to construct a Hamiltonian path in G, which contradicts
the assumption that the MIST of G has 3 leaves. Therefore vk+j must be internal within p′′, and
so connecting p′ and p′′ using this edge gives a spanning tree of G with exactly three leaves (see
Figure 5.7d), which is therefore a MIST of G.

While this MIST does not necessarily contain P as a leaf-leaf path, it does contain a longer branch-
free prefix path than p, as vk+j−1 is the unique branch vertex in this MIST, and so ⟨v1, . . . , vk+j−2⟩may
not contain any branches. Therefore through repeated application of the above process, the length
of the longest branch-free prefix path must strictly increase. This process cannot continue forever, as
the prefix path cannot grow longer than P itself, and so must eventually give a MIST in which P is
a leaf-leaf path, as desired.

We can now generalise this property from three-leaf MISTs to MISTs with any number of leaves
so as to show that for any connected interval intersection graph, there exists a MIST which contains
the greedy path as a leaf-leaf path. For any prefix path in any MIST, we can select a three-leaf leaf-
induced subtree that contains that prefix and the next vertex in the greedy path. We can therefore
rearrange this subtree, and hence the whole MIST, to extend the prefix path. This process can be
repeated indefinitely until the prefix path is the whole greedy path.

Lemma 5.4.10. Let I be a set of intervals with connected intersection graph G. Let (P, S) =

FindPath(I). There exists a MIST of G in which P is a leaf-leaf path.

Proof. Let l be the number of leaves in a MIST of G.
If l = 2, then there exists a Hamiltonian path in G. By Lemma 5.3.1, if there exists a Hamiltonian

path, then P will be a Hamiltonian path, and will therefore be a MIST in which P is a leaf-leaf path,
as desired.

If l ≥ 3, then we will proceed by induction on the greatest length k for which there exists a MIST
of G which contains a prefix path of length k.
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• Base case k = 1: By Lemma 5.4.6, there exists a MIST of G in which min(I) is a leaf. By
Lemma 5.3.2, min(I) is also the first element in P . Therefore there exists a MIST of G which
contains a length k = 1 prefix path.

• Inductive step: By the inductive hypothesis we may assume there exists a MIST T of G with
a prefix path p of length k such that p = ⟨v1, . . . , vk⟩. Let u be any leaf in T such that the
leaf-leaf path from v1 to u contains p. Let w be any leaf in T such that the leaf-leaf path from
v1 to w contains vk+1. The union of these two leaf-leaf paths is then a leaf-induced subtree
t with three leaves: v1, u, and w. Let I ′ = V (t), and G′ be the intersection graph of I ′. Let
(P ′, S′) = FindPath(I ′). Let p = ⟨v1, . . . , vk+1⟩ be the length k+1 prefix of P . Since V (p) ⊆ I ′,
by Lemma 5.4.3, p is also a prefix of P ′. By Lemma 5.4.9, there exists a MIST t′ of G′ that
contains P ′ as a leaf-leaf path. Therefore, by Lemma 5.4.4, we can replace t with t′ in T to give
a MIST T ′ of G in which P ′ is a leaf-leaf path. Since p is a prefix of both P and P ′, it must
therefore be a prefix path in T ′ Therefore there exists a MIST of G which contains a length k+1

prefix path.

Therefore, by induction, there exists a MIST of G which contains a prefix path of any length, up to
and including the length of P itself. Therefore there exists a MIST of G in which P is a leaf-leaf
path.

Finally, we combine this with our original result to give an inductive proof of correctness for
Algorithm 7.

Theorem 5.4.11. Let I be a set of intervals with connected intersection graph G. FindMIST(I) will
return a MIST of G.

Proof. Let (P, S) = FindPath(I). We will proceed by induction on the number of leaves l in a MIST
of G.

• Base case l = 2: By Lemma 5.3.1, if G contains a Hamiltonian path, then P will be a Hamiltonian
path and S = ∅. Therefore FindMIST(I) will call FindPath(I), find S to be empty, and will
immediately return P , which as a Hamiltonian path must be a MIST of G.

• Inductive step: Let I ′ be a set of intervals with connected intersection graph G′ such that there
exists a MIST of G′ with l − 1 ≥ 2 leaves. By the inductive hypothesis we may assume that
FindMIST(I ′) will return a MIST of G′. By Lemma 5.4.10, there exists a MIST T ′ of G′ in
which P is a leaf-leaf path. Therefore, by Lemma 5.4.1, FindMIST(I) will return a MIST of G.

Therefore, by induction, FindMIST(I) will return a MIST of G.

5.4.2 Iterative Algorithm

It is possible to convert the recursive Algorithm 7 presented in Section 5.4.1 to an equivalent iterative
form using the following observations:

If FindPath does not find a Hamiltonian path, the remaining vertices must not intersect the ends
of the greedy path, but rather must be wholly to their right.
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Lemma 5.4.12. Let I be a set of intervals with connected intersection graph G. Let (P, S) =

FindPath(I). Every interval in S must be wholly right of the leaves of P .

Proof. FindPath(I) would only return when it had found a vertex with no remaining neighbours in
S. Therefore the final vertex t in the path must be wholly left of everything in S. Furthermore, since
by Lemma 5.3.2 min(I) is a leaf in P , it must be left of t, and so anything wholly right of t must also
by wholly right of min(I). Therefore every interval in S must be wholly right of both min(I) and t,
the leaves of P .

The subproblem constructed by Algorithm 7 will have the same leftmost interval as the original
problem, and the only neighbour of this interval will be u, the union of the greedy path tail vertices
Vt, and so these must be the first two vertices of the greedy path for the subproblem.

Lemma 5.4.13. Let I be a set of intervals with connected intersection graph G. Let I ′ = (I \Vt)∪{u}
be the subproblem constructed in the execution of FindMIST(I). The first two vertices selected by
FindPath(I ′) will be min(I) and u.

Proof. Since min(I) ∈ I ′, by Lemma 5.3.2, it will be the first vertex chosen by FindPath(I ′). Fur-
thermore, by Lemma 5.4.12, any vertex not in Vt must be wholly right of min(I). Therefore u must
be the only vertex that intersects min(I), and so will be chosen next.

Therefore, after selecting the first two vertices min(I) and u, the invocation of FindPath(I ′) will
be left with the same set of remaining intervals S as was returned by FindPath(I). The difference
then is that while FindPath(I) was unable to find a remaining neighbour of p, and so had to return,
FindPath(I ′) is looking for an interval that intersects u =

∪
Vt. Furthermore, Vt = VP \ {min(I)},

but we know that nothing in S can intersect min(I), so equivalently we may select the leftmost interval
that intersects

∪
VP .

Therefore we can construct an iterative version of Algorithm 7 by modifying Algorithm 6 such
that, when no remaining interval intersects p, it instead selects t← min(s ∈ S | s∋∈

∪
VP ). Of course

this vertex will not be adjacent to p, so we must then select a new parent to which we can connect t.
In the recursive version, we simply select any adjacent vertex in Vt, and similarly here we can select
any adjacent vertex in VP . This iterative construction of FindMIST is presented in Algorithm 8. An
implementation of this algorithm is available from https://github.com/gozzarda/interval_mist
[23].

Naively, this algorithm can be implemented in O(|I|2) time by simply iterating through all remain-
ing intervals in order to find the leftmost one that intersects our desired interval. However, we can
improve on this complexity using the techniques described in Section 5.3.

5.4.3 Efficient Implementation

As in Section 5.3, we can use segment trees to find min(s ∈ S | s ∋∈ p) in logarithmic time. Notably,
this result depends on the result from Lemma 5.3.5 that no interval in S may be wholly left of p, and
therefore any remaining interval with a left endpoint less than the right endpoint of p must intersect
p, allowing us to simply query a prefix of intervals ordered by left endpoint. The same segment tree
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Algorithm 8 Build a MIST for a set of intervals I

1: function FindMIST(I)
2: p← min(I)
3: S ← I \ {p}
4: VP ← {p}
5: EP ← ∅
6: while S = ∅ do
7: if ∃ s ∈ S : s ∋∈ p. then
8: t← min(s ∈ S | s ∋∈ p) ▷ Same criteria as Algorithm 6 by default
9: else ▷ If the normal criteria cannot select anything

10: t← min(s ∈ S | s ∋∈
∪

VP ) ▷ Allow branching from any vertex in the tree
11: Let p ∈ {v ∈ VP | v ∋∈ t} ▷ Connect t to an arbitrary neighbour in VP

12: end if
13: S ← S \ {t}
14: VP ← VP ∪ {t}
15: EP ← EP ∪ {p, t}
16: p← t
17: end while
18: T ← (VP , EP )
19: return T
20: end function

can be used to find min(s ∈ S | s ∋∈
∪
VP ), as for any interval to be wholly left of

∪
VP , it must be

wholly left of everything in VP , which again cannot be the case.
Even if we can select the leftmost neighbour of

∪
VP efficiently, this is still dominated by then

selecting a neighbour of that vertex from VP , for which we cannot immediately adapt the same segment
tree. We can, however, use the same techniques. Since we only wish to select any arbitrary neighbour
from {v ∈ VP | v ∋∈ t}, all we require is that if there exists some interval in VP that intersects
t, we are able to find some such interval. We know that for some interval v to intersect t, then
l(v) < r(t) ∧ l(t) < r(v). Using a similar segment tree to above, in which intervals are ordered by left
endpoint, we can easily query the range of intervals for which l(v) < r(t). For any of these intervals
to intersect t there must therefore be one such that l(t) < r(v). The existence of any such interval
means that the rightmost of these intervals must also intersect t, and therefore that if the rightmost
interval does not intersect t, then none of them may. We can find the rightmost interval in this range
by taking the maximum right endpoint. Therefore if we instead use a segment tree which aggregates
elements by taking the maximum of its children, we can select some p ∈ {v ∈ VP | v ∋∈ t} using a
single segment tree query. This means we can both find an neighbour of t in VP and insert t into VP

in logarithmic time.
If we represent each of S and VP with a segment tree, we can therefore add each vertex to the tree

in logarithmic time. Using a minimum segment tree we can select the leftmost remaining neighbour
of either p or

∪
VP from S in logarithmic time. Using a maximum segment tree we can select an

arbitrary neighbour of t from VP in logarithmic time. The selected vertex t can then be removed
from S and inserted into VP both in logarithmic time. Since Algorithm 8 will repeat this process to
add one interval at a time to the tree until none remain, this gives us an overall time complexity of
O(|I| log|I|).
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Given the counterexample to Li et al.’s algorithm presented in Section 5.2, this is the only
polynomial-time interval MIST algorithm of which I am aware.

59



5. A GREEDY ALGORITHM FOR MAXIMUM INTERNAL SPANNING TREE IN
INTERVAL GRAPHS

60



Chapter 6

Conclusion

Geometric intersection graphs have applications ranging from bioinformatics and chemistry to au-
tomated circuit layout, scheduling, and infrastructure optimisation. I examined several problems
relating to geometric intersection graphs, and have presented solutions to these problems.

Polygon-circle graph recognition has been a long standing problem of interest [33], despite having
been shown to be NP-complete [43]. Though they are typically described by their geometric inter-
pretation, polygon-circle graphs also have an equivalent alternating sequence representation [4]. This
alternating sequence representation suggests a simple brute-force enumeration method for finding a
representation of a given polygon-circle graph. I presented this method in Chapter 2, along with two
more efficient methods. By analysing the properties of alternating sequences, we see that there are
many prefixes that are behaviourally equivalent and interchangeable with each other, such that explor-
ing a prefix that is equivalent to one we have already seen is a waste of time. I exploit this property in
the design of a pair of more efficient algorithms for this problem. The first is a dynamic programming
solution based on memoising these states to shortcut exploring states that we already know do not lead
to a representation of the graph. This method is substantially faster than brute force, but requires so
much memory for the memoisation table as to be intractable for any interesting graph. Instead I use
pseudocyclic automata to construct a recognition automaton for alternating sequence representations
of the desired graph. By optimising the automaton to combine behaviourally equivalent states at
each point in the construction, the final recognition automaton uses the minimum possible number of
states. Tracing the states of the resulting automaton allows us to construct an alternating sequence
representation, and hence a polygon-circle intersection representation of the desired graph. While in
the worst case this algorithm requires O(

√
8
|V |2−|V ||V |2) time and O(

√
8
|V |2−|V |

) memory, this opti-
misation means that in practice the algorithm requires much less time and memory than these upper
bounds would suggest. To my knowledge this is the first practical algorithm for polygon-circle graph
recognition. With further development this method may be generalisable to other classes of graphs
that permit sequence representations, expanding its practical applications.

The above polygon-circle graph recognition algorithm is fast enough to enable an exhaustive search
to find the smallest non-polygon-circle graph, the 3-prism. In Chapter 3 I developed a constructive
proof that the 3-prism is not a polygon-circle graph, but that it is an interval filament graph. In
combination with the known proof [19] that polygon-circle graphs are a subclass of interval filament
graphs, this serves as a constructive proof that they are specifically a proper subclass. While this
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result was already known, the previous proof relied on analyses of the structure of random graphs
in the limit to infinity, and so was not constructive [29]. This is the first constructive proof of this
property, and with further development its intermediate results may have applications in proofs of
other graph subclass relationships.

In Chapter 4 I examined the problem of minimising the average shortest path length in circular
arc graphs by inserting a new edge from a set of candidates S. This problem can be solved naively
by simply recomputing the average path length for each new edge. I presented a pair of solutions
that work in general graphs, including an algorithm of my own design based on precomputing weight
thresholds at which the new edge becomes better than an alternative path. This algorithm is a more
natural fit for directed graphs, but was able to be generalised to undirected graphs while remaining
O(|V |3 log|V | + |V ||S| log|V |). In circular-arc graphs specifically, using an O(|V |2) all-pairs shortest
path algorithm by Saha, Pal, and Pal [45] makes the naive approach just O(|S||V |2), but this is
still slower than the threshold algorithm for large numbers of candidate edges. This method is also
applicable to interval graphs, as well as any other subclasses of circular-arc graphs, and of course the
threshold algorithm is applicable in general directed and undirected graphs.

Several optimisation problems that are NP-hard in generals graphs are known to have polynomial-
time solutions in interval graphs, such as the Hamiltonian path problem [39]. The maximum internal
spanning tree (MIST) problem is a generalisation of the Hamiltonian path problem, as if a Hamiltonian
path exists it is also a spanning tree with the maximum possible number of internal vertices. Li, Feng,
Jiang, and Zhu [38] present what they claim to be a polynomial-time algorithm for MIST in interval
graphs. In Chapter 5, I presented a counterexample that shows that Li et al.’s algorithm and proof of
correctness for that algorithm are incorrect. I then used the problem’s relationship to the Hamiltonian
path problem to extend a polynomial-time greedy Hamiltonian path algorithm for interval graphs by
Manacher, Mankus, and Smith [39] to find MISTs in interval graphs. I proved the correctness of this
algorithm and showed that it can be implemented in O(|I| log |I|) time, making it the only polynomial-
time interval MIST algorithm of which I am aware.

Geometric intersection graphs have proved to be a powerful tool for modelling a wide range of
systems and solving valuable problems in informatics, design, and optimisation. I have presented a
number of problems in this field, and developed novel solutions to these problems that extend the
state of the art. With further work these results may not only find practical applications, but may
serve as a basis for other new developments in this field.
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